
NĊĜ SęĆēĉĆėĉĘ ċĔė BėĔĜĘĊė-BĆĘĊĉ TėĚĘę
TčĊ RĊĈĊēę AĈĈĊđĊėĆęĎĔē Ĕċ IĒĕėĔěĊĒĊēęĘ

Tom Ritter — tritter@isecpartners.com

iSEC Partners, Inc
123 Mission Street, Suite 1020

San Francisco, CA 94105
https://www.isecpartners.com

March 15, 2012

Abstract
Improvements to Browser Security, TLS, and Public Key Infrastructure have been appearing at an astonishing

rate in the past few years. Standards are proposed in the IETF in Web Security, Public Key Infrastructure, TLS, and
DNS Working Groups and similarly in the W3C Working Groups. Proposals for replacing Certificate Authorities,
or improving them, are presented alternately on any one of two dozen mailing lists, at conferences on opposite
sides of the globe, and in standards bodies. This paper first presents a survey of improvements being made to
Browsers, HTTP, and Javascript, noting what will be effective and what won’t. Methods for leveraging DNSSEC
for improved authentication for different protocols are covered and improvements to TLS are presented covering
protocol revisions, extensions, and techniques for using it to improve identity management. Finally a survey of all
the proposals about replacing or improving CAs is done, and the commonalities and core concepts of them are
drawn out and presented.

This paper is likely to undergo editorial and content improvements.
The most recent version will be available at http://ritter.vg/p/2012-TLS-Survey.pdf.

1 IēęėĔĉĚĈęĎĔē

When speaking with individuals participating through-
out this ecosystem - administrators of web sites, the
engineers behind browsers, researchers testing, break-
ing, and deploying protocol enhancements - a common
phrase has been heard when speaking of the past few
years: ”Things are moving really fast.” While it may seem
that there is tremendous inertia of web servers not up-
grading and Certificate Authorities not changing their
business practices (and there is), literally dozens of im-
provements have been made in browsers and standards
that incrementally improve security for users, and have
the potential to evolutionarily change how we perform
authentication on the web. While not encompassing all
of the work done by the IETF and W3C (a book would be
needed), themost user-centric improvements to Browser
Security, the TLS Protocol, and Public Key Infrastructure

are covered.

2 BėĔĜĘĊė SĊĈĚėĎęĞ

In the last several years we’ve seen an explosion of web-
based vulnerabilities being exploited: the most common
four being cross site scripting, SQL injection, cross-site
request forgery, and clickjacking. Clickjacking, reflected
cross-site scripting, and cross-site request forgery are at-
tacks on a user, and therefore must be presented in a
browser. All three can be prevented by the developers
of the web applications, and while high profile websites
are legitimately concerned about these flaws and take ef-
forts to resolve them - innovation is actually more com-
mon in browser manufacturers. In recent years browsers
have been working on several protection mechanisms,
and have been aggressive about incorporating security

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 1/20

https://www.isecpartners.com
http://ritter.vg/p/2012-TLS-Survey.pdf
https://www.isecpartners.com


updates. While a long tail of users who do not upgrade
their browsers can hold some of these protections back,
overall bleeding edge versions of browsers often con-
tain protection mechanisms even security professionals
are unaware of. The number of protection mechanisms
is eclipsed only by their complex interaction and im-
plementation differences across browsers. Excellent re-
sources are The Tangled Web¹ by Michal Zalewski and
an IETF draft on Web Security².

2.1 CĔēęĊēę SĊĈĚėĎęĞ PĔđĎĈĞ

Content Security Policy (CSP)³ is a HTTP Header that
specifies where additional content on a page is permis-
sible to be loaded from. After receiving a web resource
such as an index.html page, the browser will find ref-
erences to other resources required - images, audio or
video files, fonts, further pages in iframes, stylesheets,
and javascript files. Additionally, running javascript
may load these resources dynamically or make AJAX re-
quests. CSP allows a server to dictate to the browser
what origins are permitted when making requests. Each
of eight content types may have their own settings: im-
ages, stylesheets, javascript files, iframe locations, fonts,
<object> tags, media (<audio> and <video>), and finally
AJAX requests. A sample Content Security Policy is:

Content-Security-Policy:
default-src 'self';
img-src *;
script-src 'self', https://api.google.com

This example shows that images may be loaded from all
locations, all resources except javascript files are permit-
ted only from the original origin, and javascript files are
permitted from the original origin and from resources
loaded over HTTPS from api.google.com. Content Se-
curity Policy is near standardization, and experimental
implementations exist in Chrome, Firefox, Safari, and In-
ternet Explorer 10.

Besides disallowing content from being loaded from ar-
bitrary locations, CSP has a reporting mechanism. If the
setting report-uri is specified, a browser encounter-
ing a policy violation, in addition to blocking the con-
tent loading, will send a report to the URI specified con-
taining details, as shown in Figure 1. This can be useful
to detect targeted attacks as well as incidents of untar-
geted defacements, particularly common to off-the-shelf

installs like Wordpress, where a bot will crawl the Inter-
net looking for vulnerable installs to automatically in-
fect with malware. A second header called Content-
Security-Policy-Report-Only exists. In the pres-
ence of a Report-Only header, the browser will not block
the violating content from loading, but will issue the
same report violation. This allows server administrators
to deploy a CSP policy to a production environment for
testing, with no impact to the users, and refine the policy
to determine what origins are in use that they may not
have been aware of. Furthermore, it is possible to deploy
both headers simultaneously, which can be used to en-
force a broader policy but test a more restrictive one to
see if it blocks legitimate resources.
{
"csp-report":
{
"request": "GET http://index.html HTTP/1.1",
"request-headers":"Host: example.com

User-Agent: Mozilla/5.0
Accept: text/html;q=0.9,*/*;q=0.8
Accept-Encoding: gzip,deflate
Accept-Charset: *;q=0.7
Keep-Alive: 115
Connection: keep-alive",

"blocked-uri": "http://evil.com/some_image.png",
"violated-directive": "img-src 'self'",
"original-policy": "allow 'none'; img-src 'self'"
}

}

Figure 1: A sample Content Security Policy report viola-
tion that would be issued by a browser.

Two settings of script-src should be mentioned. In
addition to specifying web origins, it is possible to spec-
ify unsafe-inline and unsafe-eval. When unsafe-
inline is not present in the script-src set, a browser is
disallowed from executing javascript contained in inline
<script> tags, as well as attribute-based event handlers
such as onclick or onmouseover. Most websites are not
architected such that inline javascript can be wholly dis-
allowed, thus the setting will be enabled on most deploy-
ments. However, if the effort to make a website unsafe-
inline compliant is done, the risk of an exploitable XSS
flaw goes down considerably because HTML injection
flaws cannot be trivially exploited. Unsafe-eval prevents
the javascript runtime from executing any string variable
as javascript code, which (as far has been determined) is
possible in only four places: the commonly known eval()
function, setTimeout, setInterval, and the Function con-
structor. This setting will significantly strengthen a site
against javascript malware, which by default uses heav-
ily packed and obfuscated code that makes use of eval()

¹http://nostarch.com/tangledweb.htm
²https://trac.tools.ietf.org/html/draft-hodges-websec-framework-reqs
³http://www.w3.org/TR/CSP/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 2/20

http://nostarch.com/tangledweb.htm
https://trac.tools.ietf.org/html/draft-hodges-websec-framework-reqs
http://www.w3.org/TR/CSP/
https://www.isecpartners.com


extensively.

Content Security Policy can be likened to Data Execu-
tion Prevention (DEP), an exploitation mitigation set-
ting for binary executables. DEP prevents code in a read-
only memory page from being executed - most com-
monly preventing shellcode injected through a stack or
heap buffer overflow from being run. CSP (with unsafe-
inline disallowed) likewise prevents injected javascript
from being executed. DEP has a bypass called Return-
Oriented Programming, or ROP. In a ROP attack, exist-
ing executable code is reused to perform actions desired
by the attacker. It’s possible to circumvent CSP by using
a technique similar to ROP: reusing existing javascript
on the page or allowed domains to perform actions un-
intended by the developer. Other methods of bypassing
CSP include exploiting DOM-based XSS, and taking ad-
vantage of user-controlled files on the server. Addition-
ally, javascript can still be obfuscated and packed with-
out the use of eval(). CSP should not be considered a
complete solution to XSS, but is a good tool for exploit
mitigation.

2.2 CĆďĆ

Caja⁴ is a mechanism to sandbox untrusted javascript
and have it run safely within a web page. Ordinarily if
a website wanted to host modules or third-party code in
its site such as games, it would embed the content in an
iframe andhave the browser enforce the same-origin pol-
icy. Caja however runs the untrusted javascript within
the context of the page itself. Ordinarily this would al-
low the untrusted code to poison the javascript runtime,
but after untrusted javascript is cajoled, a process that is
similar to compiling, it is unable to alter the global run-
time of the page.

Caja uses an object-capability security model. In an
object-capability model, capabilities are granted by pro-
viding access to objects encompassing those capabilities.
A cajoledmodule starts sandboxed, but gains capabilities
as objects are passed to it - as an example ordinarily a
module would be unable to access the XMLHttpRequest
object to make AJAX requests, however it may be passed
into the module and used. To restrict capability, it is also
possible to pass a class that wraps XMLHttpRequest and
only allows requests to a specific domain.

2.3 JĆěĆĘĈėĎĕę CėĞĕęĔČėĆĕčĞ

There have been a number of attempts recently at pro-
ducing javascript-based cryptography. Without going
into details on any single implementation, all suffer from
the same flaws with regards to the javascript runtime
in browsers. A number of security professionals have
come out explaining why javascript-based cryptography
will ultimately never be trustworthy. An attempt at enu-
merating the problems faced follows.

1. Third-Parties: Any third party supplying javascript
to a page can alter the runtime

2. XSS: Any XSS flaw can alter the runtime
3. MITM: Without SSL the code can be easily modi-

fied in transit
4. SSL: SSL Authentication is currently not reliable
5. Modified: With each new page load, the runtime

is rebuilt and must be revalidated
6. RNG: Not all implementations of javascript have a

secure random number generator
7. Implementation: Cryptographic primitives are of-

ten implemented with subtle bugs that undermine
all security

8. Keystore: Where do you keep your keys?
9. Side Channels: Keys or sensitive state may be ex-

posed by timing and other attacks
10. Coercible: Has the entity you used to trust still

trustworthy?
11. Caching: Has your cache been tampered with or

poisoned?

It’s clear that javascript cryptography will continue to be
attempted and implemented, so the W3C has formed a
working group⁵ aimed at solving some of these problems.
The working group is in its early stages and has not cre-
ated a charter as of yet.

2.4 SęėĎĈę TėĆēĘĕĔėę SĊĈĚėĎęĞ

HTTP Strict Transport Security (HSTS)⁶ is a HTTP
header that indicates a site should only be contacted over
HTTPS. A browser will store this policy, and all HTTP
requests to the server will automatically be routed over
HTTPS. This header is designed to prevent SSL stripping
attacks, like those performed by sslstrip⁷. In a SSL strip-
ping attack, an attacker will perform a man in the mid-

⁴https://code.google.com/p/google-caja/
⁵http://www.w3.org/2011/11/webcryptography-charter.html
⁶http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec
⁷http://www.thoughtcrime.org/software/sslstrip/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 3/20

https://code.google.com/p/google-caja/
http://www.w3.org/2011/11/webcryptography-charter.html
http://tools.ietf.org/html/draft-ietf-websec-strict-transport-sec
http://www.thoughtcrime.org/software/sslstrip/
https://www.isecpartners.com


dle attack on traffic between a client and server, speak-
ing HTTPS to the server, but HTTP to the client. All
references to SSL, including stylesheets, javascript files,
links, and the Secure cookie attribute, will be removed or
rewritten. Because no error will be presented to the user,
only the most astute will notice that their connection is
not using SSL. In testing, the percentage of people who
notice stripping attacks is low. A sample header looks
like:
Strict-Transport-Security: max-age=31536000;

includeSubDomains

2.5 PĚćđĎĈ KĊĞ PĎēēĎēČ

Public Key Pinning⁸ is a mechanism for a server to spec-
ify what public keys (contained in x.509 certificates) are
acceptable for the server. Hashes of the public keys
are stored on the client for a server-specified length
of time, and subsequent TLS negotiations will contain
a whitelisting check against those previously-specified
keys. A sample header⁹ looks like:
Public-Key-Pins: max-age=31536000;

pin-sha1="4n972HfV354KP560yw4uqe/baXc=";
pin-sha256="LPJNul+w4m620714DsqxbnJecwQzYpOLmCQ="

This header specifies two hashes of public keys (encoded
in base64), and a caching time of 31536000 seconds (1
year). The server operator has the ability to pin any pub-
lic key in the certificate chain. Pinning leaf certificates
allows a server operator to whitelist specific certificates
they are committed to using. Pinning an Intermediate
or Root Certificate effectively ties the server to a single
Certificate Authority. Public Keys, instead of certificates
themselves, are pinned so a new certificate may be issued
with the same public key. Additionally, some proposed
changes to TLS involve recreating a certificate regularly,
changing its fingerprint.

Public Key Pinning has already won a battle in the war
on fraudulent certificates. Google Chrome ships with
an implementation of pinning - certain Google domains
are hardcoded to only accept certain certificate author-
ities. In July, 2011 Diginotar, a small Dutch Certificate
Authority, was hacked or otherwise tricked into issuing
over 500 fraudulent certificates, including certificates for
high-visibility organizations like Google, Yahoo, Mozilla,
Wordpress, and the Tor Project. A particularly widely en-
compassing certificate for *.google.com was used in Au-

gust, 2011 in Iran against hundreds of thousands of in-
dividuals. One individual in Iran using Google Chrome
with an understanding of TLS detected the fraudulent
certificate thanks to Chrome’s key pinning and posted
about it on a Google support forum¹⁰ which kicked off
a wide and fast investigation that ultimately resulted in
the Dutch government taking over operational control
of Diginotar’s systems, the company being distrusted in
every major browser, and declaring bankruptcy.

However, the ability for server administrators to effec-
tively perform a denial of service attack against their
users using Public Key Pinning is high. If a single key
is specified that should be used for a year, when the SSL
certificate must be renewed, it must be renewed using
the same public/private keypair as before, or the new
certificate will be rejected by the regular visitors for the
next 364 days. If the key is compromised and an imme-
diate replacement must be put in place, that same denial
of service is in effect. Therefore for browsers to comply
with this header, two hashes must be provided. A sec-
ond key is required and intended to be a certificate kept
as an offline backup able to be deployed if needed.

The current draft specifies a HTTP header that will be
sent to browsers. However, key pinning is a concept that
can be applied to TLS in general - not just in browsers. A
rough proposal to move Key Pinning into the TLS proto-
col itself exists in TACK¹¹, or Tethered Assertions for Cer-
tificate Keys. This outline was authored by Moxie Mar-
linspike and Trevor Perrin, but has not been proposed to
the standards bodies as of yet.

2.6 BĔĔęĘęėĆĕĕĎēČ TėĚĘę

Both Strict Transport Security and Public Key Pinning
rely on sending information down the same channel
(HTTP) they are ultimately trying to secure. If a client
contacts a server for the first time, in the presence of
an active attacker, the attacker is able to remove both
headers and completely circumvent the intended secu-
rity. Google Chrome will preload keys and sites as HSTS
currently, although this practice is not scalable. Aside
from this preloading, neither HSTS nor Key Pinning at-
tempt to addresses this deficiency; instead relying on the
fact that active attacks are relatively rare and it’s likely
that sites will be visited over a trustworthy network at
some point.

⁸http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
⁹Some hashes throughout the document have been abbreviated to prevent wrapping.

¹⁰http://www.google.co.uk/support/forum/p/gmail/thread?tid=2da6158b094b225a&hl=en
¹¹https://github.com/moxie0/Convergence/wiki/TACK

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 4/20

http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
http://www.google.co.uk/support/forum/p/gmail/thread?tid=2da6158b094b225a&hl=en
https://github.com/moxie0/Convergence/wiki/TACK
https://www.isecpartners.com


Additionally, as these are mechanisms for caching data
on the client, they can be used for tracking users across
sessions, even if cookies are cleared. A creative server
could use dynamic subdomains to store HSTS informa-
tion or Pinned Keys, and retrieve that information later.
With HSTS, the attacker would look for the request oc-
curring in a TLS connection or not; with Public Key
Pinning, sending an invalid certificate and seeing if a
TLS connection is established or refused. Currently,
browsers are opting to discard HSTS or Pinned Keys at
the end of a Private Browsing Session. However, if HSTS
and Pinned Keys are discarded regularly, an attacker has
more opportunities to attack a user when they have no
stored security information for the site. This is a seri-
ous concern for users who use a Private Browsing mode
by default, or read-only operating systems¹² that are de-
signed to increase security.

Finally, corporations often install a trusted root in the
browsers or operating systems of its employees. After a
network appliance is installed, a man in the middle pro-
cedure is initiated, and the installed root will be used to
create trusted certificates for secure sites communicated
with by users; no untrusted certificate warnings will be
triggered. Without debating the ethicacy of the practice,
current Key Pinning implementations allow locally in-
stalled roots to override Public Key Pins - the standard
remains silent on the matter.

3 DNSSEC

The general technique people refer to when talking
about using DNSSEC for authentication is that when a
DNS resolver is contacted to retrieve the IP address for a
server (A or AAAA records), other record requests will be
made aswell, and a certificate or public key fingerprint or
hash will be retrieved. DNSSEC is used to ensure the re-
sponses were not tampered with. The certificate (or fin-
gerprint thereof) is obtained through two channels, au-
thenticated through different trust chains. An adversary
seeking to impersonate a server would need to circum-
vent the trust authorities of two different channels.

3.1 DNSSEC-VĊėĎċĎĊĉ FĎēČĊėĕėĎēęĘ

The most well known proposal relating to DNSSEC is
DANE¹³, or DNS-based Authentication of Named Enti-
ties, which proposes to put certificate hashes of websites
into DNS. The client, most commonly a browser, will
assert the certificate obtained over the HTTPS channel
matches the one obtained over DNSSEC. Ideally DANE
will allow a server administrator to assert the validity of
a self-signed certificate, without needing the signature
of a Certificate Authority. That is only one use however,
DANE can also be used to assert the validity of a CA-
signed leaf certificate, the Certificate Authority itself, or
even a Certificate Authority unknown to the client.

Another mechanism for asserting the validity of a certifi-
cate provided over HTTPS via DNS is something dubbed
DNSSEC Stapled Certificates¹⁴ which is only present
in Chrome, with no formal commitment to support it
long-term. More complicated than the DANE proposal,
DNSSEC Stapled Certificates requires a DNS record be
created with certificate information, same as DANE. But
after the record is created, the certificate must be re-
built and have the DNSSEC chain embedded inside the
certificate itself as an extension. Because DNSSEC in-
formation expires, the certificate will have to be rebuilt
frequently and reloaded into the webserver. Frequency
depends on DNSSEC expiration, but weekly is common.
Although more complicated, one advantage of embed-
ding the DNSSEC chain in the certificate is the asser-
tion of two channels inside a single one - requiring no
additional lookups or a DNSSEC resolver. Currently the
DNS record used is actually an overload of the CAA pro-
posal covered in Section 5.2, although this may change
to a proper DANE record in the future.

Besides the certificate for a webserver, there are several
other types of fingerprints we can assert with DNS. RFC
4255¹⁵ allows assertion of SSH fingerprints using DNS.
When used with ssh -o "VerifyHostKeyDNS yes"
this will suppress the request to verify the fingerprint
seen when connecting to a server for the first time if the
fingerprint provided via DNS matches the one sent by
the server. There is a way to similarly retrieve OpenPGP
keys via DNS¹⁶, and allow people to find the key via the
command line argument gpg --auto-key-locate
pka -r user@example.com. Finally, for individuals

¹²An example of a designed-for-privacy operating system is Tails https://tails.boum.org/.
¹³http://tools.ietf.org/html/draft-ietf-dane-protocol
¹⁴http://www.imperialviolet.org/2011/06/16/dnssecchrome.html
¹⁵http://tools.ietf.org/html/rfc4255
¹⁶http://www.gushi.org/make-dns-cert/HOWTO.html
¹⁷http://tools.ietf.org/html/draft-hoffman-dane-smime

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 5/20

https://tails.boum.org/
http://tools.ietf.org/html/draft-ietf-dane-protocol
http://www.imperialviolet.org/2011/06/16/dnssecchrome.html
http://tools.ietf.org/html/rfc4255
http://www.gushi.org/make-dns-cert/HOWTO.html
http://tools.ietf.org/html/draft-hoffman-dane-smime
https://www.isecpartners.com


using S/MIME, there is a draft¹⁷ to assert S/MIME cer-
tificates via DNS.

3.2 DNSSEC TėĚĘę CčĆĎē

When speaking about performing trust decisions via
DNSSEC, it is important to note the implicit trust deci-
sions in DNSSEC itself. The fingerprints are signed with
the server’s Zone Signing Key, which in turn is signed by
the server’s Key Signing Key. But the server’s key is au-
thenticated by the organization that runs the top-level
domain the domain sits under - example.com being un-
der .com run by Verisign, example.org in .org run by the
Public Interest Registry, example.info in .info is run by
a company called Afilias. Country-code TLDs such as
.vg (British Virgin Islands) are run by companies that are
generally within the jurisdictions of the country in ques-
tion (although not always.) These organizations are in
turn authenticated by the root key, controlled by ICANN,
a US-based company. Therefore by trusting any DNSSEC
validated information, ICANN and the organization run-
ning the TLD are also trusted not to have subverted the
information.

4 TLS

TLS began as SSL, pioneered at Netscape in the 1990s.
Regrettably, the earliest deployed version of the protocol,
SSL v2, can still be found supported in some dark corners
of the web. But TLS 1.0 was standardized in 1999 with
minor changes from SSL v3, and has been widely imple-
mented. The overall protocol has undergone several revi-
sions and dozens of extensions and improvements. TLS
1.1 and 1.2 are covered primarily because they have not
been widely implemented. Other TLS extensions, such
as the Server Name Extension, are omitted not because
of lack of impact (indeed SNI is arguably the most im-
portant TLS extension deployed), but because with the
exception of the TLS renegotiation bug, only the more
recent TLS improvements are aimed at improving secur-
ing of the protocol, as opposed to adding features.

4.1 TLS PėĔęĔĈĔđ IĒĕėĔěĊĒĊēęĘ

4.1.1 TLS 1.1

TLS 1.1 was defined in April 2006 in RFC 4346 ¹⁸ and was
a relatively lightweight set of changes to the TLS proto-
col. The most significant changes were around mitigat-
ing risks in CBC mode. A theoretical flaw in the CBC
implementation of TLS 1.0 (and SSL 3.0) relating to pre-
dictable IVs was put forward earlier in the decade, and
solved resolutely in TLS 1.1. However this flaw did not
gain prominence until Sept 2011 when a practical attack
was demonstrated by Juliano Rizzo and Thai Duong at
the ekoparty security conference ¹⁹, where they were able
to decrypt parts of the TLS stream exposing authentica-
tion cookies.

TLS 1.1 also improves session resumption performance
by allowing resumption even if the previous connection
wasn’t closed cleanly. Finally, it dictates that export ci-
phers (40-bit RC4 and DES) must not be permitted. It
also adds security notes relating to timing attacks on
RSA operations and the necessity of blinding, Diffie-
Hellman small subgroup attacks, and TLS’ mac-then-
encrypt scheme.

4.1.2 TLS 1.2

Compared to TLS 1.1, TLS 1.2, defined in Aug 2008 in
RFC 5246 ²⁰, contained a significant number of changes.
The simplest change were revising the default must-
implement ciphersuite from RSA-3DES-CBC-SHA1 to
RSA-AES-128-CBC-SHA1. It also added SHA-256-based
ciphersuites, providing an upgrade option from SHA-1.
Although TLS 1.1 did close the CBC vulnerability, TLS 1.2
finishes the hardening by requiring a fully random IV and
uniform error codes.

TLS defines a psuedorandom function (PRF) for secret
expansion. Prior to TLS 1.2, the PRF was a combination
of MD5 and SHA-1; in TLS 1.2 it is simplified to be SHA-
256. A significant change between TLS 1.1 and 1.2 was the
addition of the signature_algorithms extension, which is
sent by a client to indicate what signature and hash al-
gorithm pairs may be used in digital signatures. This ex-
tension adds considerable confusion to the protocol, as
a server may have a single certificate signed using RSA,
but a client may choose to omit RSA as an acceptable
signature.

¹⁸https://tools.ietf.org/html/rfc4346
¹⁹http://ekoparty.org/2011/thai-duong.php
²⁰https://tools.ietf.org/html/rfc5246

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 6/20

https://tools.ietf.org/html/rfc4346
http://ekoparty.org/2011/thai-duong.php
https://tools.ietf.org/html/rfc5246
https://www.isecpartners.com


The last significant change in TLS 1.2 was the addition of
AEAD cryptographic modes of operation, and the data
structure changes necessary to support them. AEAD
stands for Authenticated Encryption with Associated
Data. Authenticated Cipher Modes can tell when the
ciphertext has been manipulated or corrupted in tran-
sit during the decryption operation; compared to CBC
mode which can make no assertions about the integrity
of the data, and requires an outside message authenti-
cation code to provide integrity. While TLS already pro-
vides integrity by MAC-ing the data prior to encryption,
AEAD ciphermodes add another layer of protection and
may remove side channels relating to adaptive ciphertext
attacks. Prior to TLS 1.2, the only secure ciphers avail-
able were RC4 (a stream cipher) and block ciphers using
CBC mode. The support for AEAD cipher modes allowed
the later addition of new block cipher modes (covered in
Section 4.1.4).

Experts believe one of the reasons for the extremely low
public deployment of TLS 1.2 is the number and breadth
of changes which do not provide significant benefit²¹.

4.1.3 TLS Deployment

TLS 1.1 and 1.2 are not implemented or deployed widely.
Of major libraries, support exists only in the schan-
nel implementation in Windows 7/2008R2, gnuTLS, and
OpenSSL 1.0.1 (currently beta). Server support therefore
requires IIS 7.5 on Windows Server 2008R2, or Apache
using mod_gnutls. Among browsers, only Opera and In-
ternet Explorer (on Windows 7/2008R2) have support,
and it must be enabled manually. Notably, support is
missing fromNSS, the cryptographic library used by Fire-
fox and Chrome.

TLS 1.0 TLS 1.1 TLS 1.2
XP 3

Vista/2008 3
Win7/2008R2 3 3 3

OpenSSL 3 1.0.1 1.0.1
gnuTLS 3 3 3

NSS 3

Table 1: TLS Version Support in Libraries

TLS 1.0 TLS 1.1 TLS 1.2
IIS6 3
IIS7 3

IIS7.5 3 Manual Manual
mod_ssl 3

mod_gnutls 3 3 Manual

Table 2: TLS Version Support in Servers

TLS 1.0 TLS 1.1 TLS 1.2
IE XP 3

IE Vista/2008 3
IE Win7/2008R2 3 Manual Manual

Opera 3 Manual Manual
Safari 3

Chrome 3
Firefox 3

Table 3: TLS Version Support in Browsers

A much more complete comparison of TLS libraries
with individual feature comparisons is available on
Wikipedia²².

Because of the lack of support in libraries, especially
OpenSSL, deployment is minimal. There are a few
sources of data, including surveys done by Opera in April
2010²³, the EFFObservatory ²⁴, andQualys in April 2011²⁵.
All contain slightly different numbers, but all round to
0% of servers supporting TLS 1.1 or 1.2.

Besides lack of support in libraries, there are misbehav-
ing implementations that reduce the security of TLS de-
ployment. An excellent summary of TLS practices is
present in ²⁶ and includes TLS servers that are intoler-
ant of TLS versions greater than 1.0, compression algo-
rithms, and a relatively high number of servers intoler-
ant to any extensions (7%). If an initial handshake fails,
nearly all HTTPS clients will enter a fallback mode using
SSLv3, with no compression or extensions. This is par-
ticularly damaging to the server_name extension, where
a client may be presented with a different SSL certificate
that does not match the hostname requested. From a
security perspective, this behavior will always enable a
downgrade attack. A client is unsure if the handshake
failure was a result of a misbehaving server or if an ad-
versary inserted the failure alert to provoke the client to

²¹https://mail1.eff.org/pipermail/observatory/2011-August/000281.html
²²https://en.wikipedia.org/wiki/Comparison_of_TLS_Implementations
²³http://my.opera.com/securitygroup/blog/2010/04/06/how-secure-is-the-secure-web-ssl-tls-server-stats-part-1
²⁴https://mail1.eff.org/pipermail/observatory/2011-August/000290.html
²⁵http://blog.ivanristic.com/Qualys_SSL_Labs-State_of_SSL_InfoSec_World_April_2011.pdf
²⁶http://www.imperialviolet.org/2011/02/04/oppractices.html

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 7/20

https://mail1.eff.org/pipermail/observatory/2011-August/000281.html
https://en.wikipedia.org/wiki/Comparison_of_TLS_Implementations
http://my.opera.com/securitygroup/blog/2010/04/06/how-secure-is-the-secure-web-ssl-tls-server-stats-part-1
https://mail1.eff.org/pipermail/observatory/2011-August/000290.html
http://blog.ivanristic.com/Qualys_SSL_Labs-State_of_SSL_InfoSec_World_April_2011.pdf
http://www.imperialviolet.org/2011/02/04/oppractices.html
https://www.isecpartners.com


retry with less secure options. Until HTTPS client re-
move the downgrade behavior this vulnerability will al-
ways exist, and the security benefits of negotiating TLS
1.1 or 1.2 will not be realized when the threat model in-
cludes an active attacker.

4.1.4 TLS Ciphersuites

TLS has approximately 300 different ciphersuites de-
fined, containing combinations of Key Exchange algo-
rithms, Ciphers, Cipher Modes, and Hash Functions.
(The definitive list of standardized ciphersuites is main-
tained by the IANA²⁷.) There are a number of less com-
mon ciphers present that may be negotiated depend-
ing on client and server implementation: including the
SEED, ARIA, and Camellia block ciphers. The set of Rus-
sian algorithms known as GOST, consisting of a block ci-
pher, hash function, and digital signature algorithm, was
proposed but never standardized, although may be en-
abled in OpenSSL²⁸. Ciphersuite additions are regularly
proposed; most recently CLEFIA, a lightweight block ci-
pher²⁹.

Key Exchange algorithms have also been added, for ex-
ample RFC 4492³⁰ that added support for Elliptic Curve
Cryptography. A less algorithmic key exchange method
added was Pre-Shared Keys, in RFC 4785³¹. Finally, block
cipher modes have also been added, with more regular-
ity. RFC 5288³² added GCM, a new cipher block cipher
mode for AES - much desired with the general uneasi-
ness around CBC mode. GCM mode is the first AEAD
mode added to TLS, and will provide integrity for the
data encrypted with it as part of the cipher mode. Like-
wise, the proposed AES-CCM draft³³ will also add an au-
thenticated block cipher mode. However, because these
are AEAD modes, they will only be available in TLS 1.2.
Hash Functions in use are almost universally SHA-1, al-
though SHA-256 and SHA-384 ciphersuites are defined
for newer ciphers.

TLS was designed to provide three things: Authentica-
tion, Confidentiality, and Integrity. It is interesting to
observe that in pursuit of a single protocol that provides
everything, the option to ignore either Authentication,
Confidentiality, or both is present. Although not widely

used, TLS is defined with the DH_anon key exchange al-
gorithm, which performs no authentication. One could
say you’re not sure who you’re talking to - but you know
it’s encrypted! Similarly, there are NULL ciphersuites
defined that provide no confidentiality, but do provide
authentication and integrity. These NULL ciphersuites
(along with the Export ciphers), have formed the basis
for a relatively common line item in vulnerability reports.

4.1.5 False Start

False Start³⁴ is a change in the TLS handshake designed
to speed up page loading for clients. Ordinarily a TLS
handshake requires the client to wait twice: once after
the ClientHello, and once after the ClientKeyExchange.
This means to begin receiving secure page content for
a website, a client must wait for four responses from
the server: the TCP SYN/ACK, two responses in the TLS
handshake, and the final HTTP Response containing the
page contents. Removing one of the waits for the TLS
handshake has a measurable improvement in page load
time.

Figure 2: Ordinary TLS Handshake

The last piece of the TLS handshake is the server send-
ing an encrypted Finished record. This record is used to
verify the handshake was not tampered with, and there-
fore is critical to the security of the protocol. False Start
reorders the handshake so the client sends application
data prior to receiving the server’s Finished message.

²⁷http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
²⁸http://www.openssl.org/docs/apps/ciphers.html#GOST_ciphersuites_from_draft_chu
²⁹https://datatracker.ietf.org/doc/draft-katagi-tls-clefia/
³⁰http://tools.ietf.org/html/rfc4492
³¹http://tools.ietf.org/html/rfc4785
³²http://tools.ietf.org/html/rfc5288
³³http://datatracker.ietf.org/doc/draft-mcgrew-tls-aes-ccm/
³⁴https://tools.ietf.org/html/draft-bmoeller-tls-falsestart

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 8/20

http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-3
http://www.openssl.org/docs/apps/ciphers.html#GOST_ciphersuites_from_draft_chu
https://datatracker.ietf.org/doc/draft-katagi-tls-clefia/
http://tools.ietf.org/html/rfc4492
http://tools.ietf.org/html/rfc4785
http://tools.ietf.org/html/rfc5288
http://datatracker.ietf.org/doc/draft-mcgrew-tls-aes-ccm/
https://tools.ietf.org/html/draft-bmoeller-tls-falsestart
https://www.isecpartners.com


Figure 3: False Start Handshake

An active attacker is able to manipulate the client or
server responses without either knowing until after the
encrypted data has been sent by the client. The most
practical attack is to downgrade the ciphers supported by
the client (or similarly, the cipher chosen by the server).
If the client supports the weaker ciphers, like 40 Bit RC4
or 56 Bit DES, they will weakly encrypt the first applica-
tion request (often containing cookies or a username/-
password). The attacker is then able to quickly brute
force the decryption key and retrieve the encrypted data.
Depending on the choice of the attacker, the user will re-
ceive a timeout or an error in the browser.

Figure 4: Cipher Downgrade Attack

To defend against this attack, False Start is dictated to
not support sending data using any cipher with a key less
than 80 bits. Additionally, a small minority of TLS im-
plementations are compatible with false start. Sites us-
ing these incompatible implementations are maintained
in a publicly available blacklist in the Chromium source
code repository³⁵. A different revision to the TLS Hand-

shake named Snap Start was put forward by Google at
the same time as False Start, however Snap Start proved
too complicated and was withdrawn. An analysis of Snap
Start is present on the Root Labs blog³⁶.

4.1.6 Next Protocol Negotiation

While many application protocols are layered over TLS,
until recently browsers only layered HTTP over TLS.
However two new protocols are becoming more popu-
lar: WebSockets and SPDY. Browsers can provide a great
deal of control to a determined attacker, and relatively
strange attacks have been carried out by inventive secu-
rity researchers, including Chosen Protocol Attacks. In
a Chosen Protocol Attack, an attacker tricks the browser
into speaking to a service that speaks a different protocol
than the browser thinks it is. This can result in security
bypasses or information disclosure.

POST / HTTP/1.1
Referer: http://i8jesus.com/stuff/xps/test.html
Content-Type: multipart/form-data;

boundary=--------------------7da70534
...
Cookie: <snip>
--------------------7da70534
Content-Disposition: form-data; name="doesntmatter"

USER anonymous
--------------------7da70534
Content-Disposition: form-data; name="doesntmatter"

PASS a@a.com

Figure 5: A Chosen Protocol Attack where a browser is
tricked into sending valid FTP commands.

A Chosen Protocol Attack is shown in Figure 5, where
a browser is tricked into POSTing data to a FTP server.
Most FTP servers will ignore commands they do not rec-
ognize, so the HTTP headers will be ignored, but USER
anonymouswill be interpreted by the FTP server as a le-
gitimate FTP command to log in anonymously.

Next Protocol Negotiation³⁷ is a TLS addition that elim-
inates the possibility of Chosen Protocol Attacks when
TLS is the wrapper for another protocol and is negotiated
prior to data being sent. It adds a TLS extension and a
handshake message type that specify what the next pro-
tocol (layered inside of TLS) will be.

³⁵http://src.chromium.org/viewvc/chrome/trunk/src/net/base/ssl_false_start_blacklist.txt?revision=
123482&view=markup

³⁶http://rdist.root.org/2012/02/27/ssl-optimization-and-security-talk/
³⁷http://www.ietf.org/mail-archive/web/tls/current/msg05593.html, http://tools.ietf.org/html/

draft-agl-tls-nextprotoneg

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 9/20

http://src.chromium.org/viewvc/chrome/trunk/src/net/base/ssl_false_start_blacklist.txt?revision=123482&view=markup
http://src.chromium.org/viewvc/chrome/trunk/src/net/base/ssl_false_start_blacklist.txt?revision=123482&view=markup
http://rdist.root.org/2012/02/27/ssl-optimization-and-security-talk/
http://www.ietf.org/mail-archive/web/tls/current/msg05593.html
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
https://www.isecpartners.com


4.2 IĉĊēęĎęĞ MĆēĆČĊĒĊēę Ďē TLS

A full accounting of all that falls under the broad term of
”Identity Management” would require a binding for the
paper rather than a staple; instead we are focusing only
upon improvements to TLS related to managing iden-
tity. Pointers to other new forms of identity manage-
ment across multiple websites are provided.

4.2.1 Channel Binding

Channel Binding is a cryptographic concept (explained
partially in RFC 5056³⁸) that allows applications to assert
that two endpoints communicating at one layer are the
same endpoints communicating at a lower layer. Con-
sider a scheme similar to HTTP Basic Auth, where a
client authenticates to the server by sending a hash of
their password to the server with every request. The
server knows the plaintext password, performs the same
hash operation, and compares their hash with the client-
provided hash. It is trivial to perform a man in the mid-
dle attack against this protocol; simply read the packet
as it crosses the wire - it is not encrypted. Now layer the
protocol inside of TLS. The protocol itself is no more se-
cure, only the transport mechanism adds the security of
TLS. However, if an attacker can middle the TLS traffic,
for example through a forged certificate, the protocol can
be middled once again. The endpoints of the imaginary
protocol (client and server) are not the endpoints of the
TLS protocol (client and attacker, attacker and server.)

To improve security through channel binding the client
will send the password and the client’s view of the TLS
FinishedRecord concatenated together and then hashed,
instead of just sending the hashed password. In a secure
channel, both the server and client will have the same
Finished bytes, and thus can do the same hash calcula-
tions. In a middled channel, the client has one sequence
of Finished Bytes with the attacker, and the server has
a different sequence of Finished Bytes with the attacker.
The hashes will not match, and the authentication will
fail. This authentication is thus bound to the lower layer.
Channel Binding is a concept independent of TLS, but
it can be used with TLS, and RFC 5929³⁹ defines three
channel binding types for TLS: tls-unique, tls-sever-end-
point, and tls-unique-for-telnet.

There’s been some discussion recently about using chan-
nel binding to protect cookies in a web browser; however,
because cookies are not an authentication mechanism in

the sense of channel binding, the protections afforded
are not as strong. If a cookie was bound to a TLS Session
(specifically using tls-unique which is the TLS Finished
message), that cookie could not be used in any other TLS
session. This means if the cookie was stolen, for example
through a Cross Site Scripting attack, the cookie would
be useless to the thief, because the server would attempt
to validate the channel binding, and reject the cookie be-
cause it was not bound to the TLS session used by the
thief.

However, there are two problems with binding cookies
to a TLS Session. The first problem is it does not work
on first contact. We are authenticating to the site us-
ing a username and password and this authentication is
not channel bound. An attacker performing a man in the
middle attack sees the credentials go across, and then the
cookie is set in response to a valid authentication. That
cookie will be bound to the attacker rather than us, and
when the attacker passes the cookie, the server will see
the binding as valid. Withweb cookies, there is noway to
validate the binding on the client side. The second prob-
lem is a bound cookie does not protect against server im-
personation. If a client contacts an attacker thinking it
is their bank, the attacker will receive the channel bound
cookie. The attacker will be unable to use the cookie
for authentication with the legitimate server, but all the
attacker has to do is present the user with a login page
and the message ”For your security, we’ve logged you out
from inactivity, please login again.” The user will enter
their credentials and send them off to the attacker.

Furthermore, if a cookie is bound to a TLS session, the
cookie can only be used in that TLS session, which breaks
persistent cookies. There are other options for binding
however. One possibility, not defined in an RFC but still
possible, is binding the cookie to a client certificate. A
cookie bound to a client certificate could be used across
TLS sessions, because the same client certificate will be
used in the TLS protocol. And a cookie thief or man-
in-middle would be unable to create a TLS session using
a client certificate because they would need the corre-
sponding private key - which is a much more difficult
thing to steal. However, client certificates are not widely
used, and for good reason. Client Certificates require a
confusing enrollment process, have privacy implications,
portability problems, and poor browser UI (coupled with
the inability for a site to customize that UI).

³⁸http://tools.ietf.org/html/rfc5056
³⁹http://tools.ietf.org/html/rfc5929

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 10/20

http://tools.ietf.org/html/rfc5056
http://tools.ietf.org/html/rfc5929
https://www.isecpartners.com


4.2.2 Origin Bound Certificates

A proposal to improve Client Certificates is Browser-
Auth.net⁴⁰. It covers many of the problems inherent in
client certificates⁴¹, and proposed amodification to them
called Origin-Bound Certificates⁴². An Origin Bound
Certificate (OBC) has no enrollment process - it is cre-
ated on-demand by the browser and is self-signed. This
means the OBC can make no assertions about the user’s
identity. An OBC is tied to an origin - to a single website.
Therefore, the potential for tracking is reduced but not
eliminated entirely. Finally, because the OBC is created
on-demand it is also selected on-demand, and silently.
The user is never presented with a list of client certifi-
cates - if one exists, it is used, if not, it is created and
then used.

OBC is not intended to change the way websites work
now. With an ordinary client certificate, the certificate
is almost always used to authenticate a user and auto-
matically log them in. When using an OBC, they will not
be logged in (because it makes no assertions about iden-
tity.) The user will still need to log in and have cookies
set as the internet currently works. However, if a cookie
was bound to an origin bound certificate (which is pre-
cisely what BrowserAuth.net proposes⁴³), we have a so-
lution that works with persistent cookies, and elegantly
solves cookie theft. Any cookie thief would not be able
to steal the origin-bound client certificate, and therefore
would be unable to create a TLS session that the cookie
would be valid in.

However, the original problems of server impersonation
and first contact still exist. On first contact with an un-
known server, a client could be attacked by a man in the
middle, and never detect it. The attacker would gener-
ate their own origin-bound certificate, and the authen-
tication cookie would be bound to it, with no way for
the client to detect that the cookie wasn’t bound to its.
The client would save this cookie and if they tried to
use it later with the server over an error-free-channel, it
would fail! Secondly, an attacker able to impersonate a
server to a user could perform the same attack to steal
credentials - simply telling the user they’ve been logged
out ”for their safety” will trick most users into reauthen-
ticating. Finally, OBC is another form of web tracking,
albeit localized to a single site. Even when logged out,

the OBC will be able to identify a client as a particu-
lar user if they’ve ever logged in while using that origin-
bound certificate. It’s also worthwhile to note that the
HTTPOnly and Secure cookie attributes, when used with
TLS, go a long way towards solving cookie theft currently.
Although OBC and Channel-Bound Cookies is an ele-
gant approach to solving the problem, it seems to be a
tremendous amount of effort to defend against some-
thing we already have good defenses for now.

4.2.3 Using Binding Today

Channel Binding refers to a specific cryptographic con-
cept, and none of the following recommendations are
technically channel binding, but rather another form of
binding. It would be possible for an organization to
cryptographically bind a cookie to prevent cookie theft.
Consider a cookie formed by encrypting the SessionID,
browser, and operating system of the user, and authenti-
cated with a message authentication code (MAC). When
a server receives the cookie from a client, it will verify
the MAC to ensure the ciphertext has not been tam-
pered with, then decrypt it, find the user’s SessionID,
and the previously seen Browser and Operating System.
If that browser and OS do not match the currently sup-
plied values by the client (in the User-Agent Header) -
something strange has happened. There’s no reason a
cookie should migrate from Internet Explorer to Firefox,
or from a Linux machine to a Windows one (a browser
version could conceivably upgrade, but that’s handled
easily enough.) If the server detects some anomaly
like differing Operating Systems - they can invalidate
the session and require the user to re-authenticate. It
would likewise be possible to bind the SessionID to an
IP address, a single TLS Session, or other information.
Each binding point has drawbacks: using an IP address
could break mobile clients or populations behind a proxy
server, a TLS session breaks persistent cookies. Any deci-
sion should be weighted carefully, and may only be use-
ful in limited deployment scenarios.

4.2.4 Secure Remote Password

Secure Remote Password is a protocol standardized by
the IETF in RFC 2945⁴⁴, having been developed in the late

⁴⁰http://www.browserauth.net/
⁴¹http://www.browserauth.net/tls-client-authentication
⁴²http://www.browserauth.net/origin-bound-certificates
⁴³http://www.browserauth.net/channel-bound-cookies
⁴⁴https://tools.ietf.org/html/rfc2945
⁴⁵http://srp.stanford.edu/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 11/20

http://www.browserauth.net/
http://www.browserauth.net/tls-client-authentication
http://www.browserauth.net/origin-bound-certificates
http://www.browserauth.net/channel-bound-cookies
https://tools.ietf.org/html/rfc2945
http://srp.stanford.edu/
https://www.isecpartners.com


1990’s. (Stanford has a good resource for SRP at ⁴⁵.) SRP
allows a client and server to prove to each other that each
knows the password to a user account, without sending
the password across the wire. As a nice property, the
server stores the password hashed.

SRP can be layered inside of TLS, but there are no bene-
fits from this. An attacker can still perform a man in the
middle attack on the TLS connection, and observe the
SRP protocol. They won’t learn the password, because
it’s never sent, but they will observe any cookies that are
set, and can impersonate the user to the server. But RFC
5054⁴⁶ defines a way to use SRP to establish a TLS con-
nection. The TLS connection cannot be established un-
less both the client and server know the password. This
means an attacker performing server impersonation or a
man-in-the-middle attack will be unable to complete the
handshake with the client, as the client will ultimately
begin encrypting data that can only be decrypted if the
other endpoint has the user’s password.

SRP suffers from similar problems as client certificates
when used on the web. A separate process must be cre-
ated for enrollment, and a user cannot have a TLS ses-
sion without being logged into the site. The alternative
is worse: if TLS-SRP did not log the user into a site au-
tomatically, they would still be tracked but would also
have two usernames and passwords. Because the user-
name and password is used for TLS instead of the site,
the browser UI is confusing.

TLS-SRP in the browser suffers from the problems listed,
but other applications make use of TLS and a user-
name/password. Any thick-client that runs on a com-
puter, talks to a server over TLS, and authenticates us-
ing a username and password is a potential use of TLS-
SRP. If an email client authenticated using TLS-SRP, it
could never be attacked by a man in the middle, and an
email provider would never need a Certificate Authority-
signed certificate - they wouldn’t need a certificate at all.
Dozens of common applications could make use of TLS-
SRP, from line-of-business apps to twitter clients. All
of these applications gain the protection against man-
in-the-middles because their authentication mechanism
(SRP) is channel bound into the lower TLS protocol. (An-

other good resource for TLS-SRP is ⁴⁷.)

SRP has been the subject of ”is it or isn’t it” patent de-
bates. When SRP was being standardized the IETF in-
vestigated the relevant work and found three stakehold-
ers: Stanford, Phoenix, and Lucent⁴⁸. Stanford publishes
a license stating ”SRP is royalty-free worldwide for com-
mercial and non-commercial use.”⁴⁹. Phoenix states it’s
patent on SPEKE may apply to SRP, but has commit-
ted to make licenses available on reasonable and non-
discriminatory terms. Lucent has decided not to make
any statement about applicability of the EKE patents to
SRP. Most experts do not believe use of SRP should be a
concern.

4.2.5 Other Identity Management Proposals

Other Identity Management solutions that are uncon-
nected to TLS have been proposed and are being actively
developed, including OpenID⁵⁰, BrowserID⁵¹ (headed by
Mozilla), WebID⁵² (by the W3C), and Facebook Con-
nect⁵³. Additionally, OAuth⁵⁴, intended for application-
to-application authentication.

4.3 MĔėĊ TLS IĒĕėĔěĊĒĊēęĘ

A full accounting of the features of TLSwould encompass
a paper twice this length, but the following are some re-
cent or noteworthy additions to the TLS protocol.

4.3.1 Encrypted Client Certificates

Client Certificates are used to assert the identity of an
individual to a server, and thus in practice often contain
the individual’s personal information - their full name
and email and at other times can include they home ad-
dress or other private information. Furthermore, client
certificates are often used to connect to secure VPN ser-
vices - often used when a user may not wish to alert the
network operator of tunneling, or disclose their personal
information freely. However, client certificate contents
are sent in the clear as part of the TLS handshake. (Server

⁴⁶https://tools.ietf.org/html/rfc5054
⁴⁷http://trustedhttp.org/
⁴⁸http://www.pdl.cmu.edu/mailinglists/ips/mail/msg09292.html
⁴⁹http://srp.stanford.edu/license.txt
⁵⁰http://openid.net/
⁵¹https://browserid.org/
⁵²http://getwebid.org/
⁵³https://developers.facebook.com/
⁵⁴http://oauth.net/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 12/20

https://tools.ietf.org/html/rfc5054
http://trustedhttp.org/
http://www.pdl.cmu.edu/mailinglists/ips/mail/msg09292.html
http://srp.stanford.edu/license.txt
http://openid.net/
https://browserid.org/
http://getwebid.org/
https://developers.facebook.com/
http://oauth.net/
https://www.isecpartners.com


certificates are likewise sent in the clear; however, these
do not typically contain personally identifiable informa-
tion.)

A current proposal before the IETF⁵⁵ will have a client
send an ”encrypted_client_certificates” extension in it’s
ClientHello, which will be echoed by the server in the
ServerHello, if supported. If the client and server agree
on using Encrypted Client Certificates, the Certificate
and CertificateVerify messages are moved from before
to after the ChangeCipherSpec message. This will cause
them to be encrypted with the encryption key and algo-
rithm negotiated during the handshake, effectively hid-
ing them from a network operator. It is important to note
that if the client software is not configured correctly, it
may be possible to perform a downgrade attack by trick-
ing the client into believing encrypted client certificates
are not supported.

4.3.2 Datagram TLS

DTLS, or Datagram TLS, provides a version of TLS that
will operate over datagram protocols like UDP, defined
most recently in RFC 6347⁵⁶. DTLS is currently at version
1.2 in parity with TLS - there is no DTLS 1.1. TLS cannot
handle records that arrive out of order or are skipped,
because it cannot decrypt arbitrary records - it requires
all the records prior to the target to decrypt. Similarly,
the TLS handshake will break if the handshake messages
are lost. DTLS solves the second problem by requiring
handshake messages be in a specific order, saving latter
ones for processing until prior ones are received, and re-
transmitting after a timer expires. To provide the ability
to decrypt an arbitrary record, DTLS must ban stream ci-
phers (because the stream cipher context would get out
of sync in a reordered or lost packet), and add an un-
signed integer containing the sequence number to the
record - without it the message authentication code does
not have all the information needed to verify the record.
DTLS is obviously a useful protocol whenever a trustwor-
thy encryption protocol is desired, but a datagram pro-
tocol (e.g. UDP) must be used for other engineering rea-
sons.

4.3.3 Minor TLS Additions

Several other TLS additions have been standardized re-
cently (one while I was writing this very section of the
paper.) RFC 5705⁵⁷ defines a method to use the key-
ing material produced by the TLS handshake in chan-
nel binding or as a seed to a random number generator.
One use is if the TLS handshake is trusted to have used a
good psuedo-random number generator and its entropy
is not in question, an implementor may wish to use it
to bootstrap their random number generation; the other
use being similar to the bind types defined for channel
binding to TLS. A heartbeat extension was added to TLS
and DTLS in RFC 6520⁵⁸. Previously, if a client wished to
check with the peer to determine if it is still alive (most
commonly in DTLS, but possibly also in TLS) the only
mechanism to do so would be with an application-level
heartbeat or no-op message, or with a costly TLS renego-
tiation. The HeartbeatRequest and Response messages
indicate the peer is still present and holding the ses-
sion open. RFC 4279⁵⁹ defines TLS authentication per-
formed via Pre-Shared Keys. TLS-PSK can be advanta-
geous to avoid public key operations on embedded de-
vices, among other scenarios.

There are three additional items to note around certifi-
cate transportation, including two older standards, to
provide a full accounting of Key Exchange Algorithms.
A current draft⁶⁰ will allow a server to send the raw pub-
lic key of its certificate, instead of the entire certificate
container and chain. This can be advantageous in em-
bedded scenarios or other situations where the client is
already in possession of an authenticated public key for
the server, for example if it was obtained via DANE or
another mechanism. Finally, it is worth noting an older
addition to TLS that is not widely used: OpenPGP. Al-
though not widely used or implemented, it is possible⁶¹
to send an OpenPGP key in place of an x.509 certificate.
Finally, a very old addition to TLS is RFC 2712⁶² which
specifies how Kerberos can be used within TLS.

⁵⁵http://tools.ietf.org/html/draft-agl-tls-encryptedclientcerts
⁵⁶http://tools.ietf.org/html/rfc6347
⁵⁷http://tools.ietf.org/html/rfc5705
⁵⁸http://tools.ietf.org/html/rfc6520
⁵⁹http://tools.ietf.org/html/rfc4279
⁶⁰http://tools.ietf.org/html/draft-wouters-tls-oob-pubkey
⁶¹http://tools.ietf.org/html/rfc6091
⁶²http://tools.ietf.org/html/rfc2712

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 13/20

http://tools.ietf.org/html/draft-agl-tls-encryptedclientcerts
http://tools.ietf.org/html/rfc6347
http://tools.ietf.org/html/rfc5705
http://tools.ietf.org/html/rfc6520
http://tools.ietf.org/html/rfc4279
http://tools.ietf.org/html/draft-wouters-tls-oob-pubkey
http://tools.ietf.org/html/rfc6091
http://tools.ietf.org/html/rfc2712
https://www.isecpartners.com


5 PĚćđĎĈ KĊĞ IēċėĆĘęėĚĈęĚėĊ

Public Key Infrastructure is a tremendously large topic
with more corner cases than most individuals are aware
of. The most commonly thought of implementation is
the CA infrastructure and public websites. But corpo-
rations have their own Certificate Authorities with their
own infrastructure and revocation mechanisms. Revo-
cation occurs not just for server certificates, meaning
the client must verify - but for client certificates too,
meaning the server must perform revocation checking.
The Federal Bridge CA is used provide a single Public
Key Infrastructure amongst several US government de-
partments and has been described as the ’Most Compli-
cated PKI Infrastructure on the Planet’, containing sev-
eral cross-signed roots. But it is almost never thought of
by individuals when they first become interested in PKI
and begin exploring.

The following section is not designed to perform even
a cursory explanation of the intricacies of PKI as it ex-
ists today, but rather focus on the most common case:
validation of public sites in a web browser, for average
users. In the past few years, spurred on by several re-
peated high-profile incidents at Certificate Authorities
like Comodo, Diginotar, and Trustwave, there has been
a growing wave of discontentment with Certificate Au-
thorities, and there have been many proposals to change
the system, or eliminate them entirely. These propos-
als, in addition to revocation, are covered with an eye to-
wards drawing out underlying commonalities and prop-
erties, ultimately culminating in a list of concepts that
can be used to evaluate any proposal, or perhaps design
yet another.

5.1 RĊěĔĈĆęĎĔē

5.1.1 Certificate Revocation Lists

ACertificate Revocation List (CRL) is a list of Serial Num-
bers of certificates a Certificate Authority has revoked,
along with issue and next-issue dates, signed by the CA.
CRLs are updated every couple days, and are cached on
the client for up to a week. CRLs often must be explicitly
installed on clients - while it is possible to put a CRL loca-
tion into the certificate itself via an extension, this is not
always done. Besides problems with locating them and
timeliness - CRLs can grow to be very, very large - which
is a concern particularly with mobile clients. Techniques
to segment them by revocation reason or perform delta
CRLs have been proposed, but not widely adopted.

5.1.2 Online Certificate Status Protocol

The Online Certificate Status Protocol (OCSP) is a mech-
anism that’s designed to be more timely. When a client
receives a certificate from a server they query an OCSP
responder, which is almost always run the issuing CA,
to check the revocation status of the certificate. On one
end of the spectrum, this could provide much better se-
curity, as a CA could potentially respond with an affir-
mative ”This certificate is still valid as of now, and I rec-
ognize it” (a whitelist approach), but on the other end of
the spectrum - OCSP responders are often fed by CRLs
and thus inherit the same timeliness problem.

A major problem with OCSP responders is the additional
latency added to a page load - for each new certificate
seen (several on a page with third party resources) a
browser must make an additional request after the TLS
handshake prior to the request. Additionally, an OCSP
responder is another single point of failure for a site, one
outside of their control. If the CA’s OCSP responder goes
down, so to does the site. Because of this reason, no
browser will perform a hard-fail on the lack of an OCSP
response. Dubbed ’soft-fail OCSP’, this provides no secu-
rity, because an attacker performing a man in the mid-
dle attack can simply block OCSP requests or responses.
There are other issues: OCSP status codes are ambigu-
ous at times, it too is driven off serial numbers instead of
certificates, and it also leaks the client’s browsing habits
to the operator of the OCSP responder.

5.1.3 OCSP Stapling

OCSP Stapling attempts to address the two largest prob-
lems with OCSP. Instead of a client obtaining an OCSP
response, the server will obtain theOCSP response in ad-
vance and provide it to the client. Because the response
is signed by the CA, it is fine for the server to provide
it to us, and this eliminates the single point of failure,
the additional round-trip required, and also the privacy
leakage. OCSP Stapling does have a few practical prob-
lem, perhaps most notably that it’s not available to most
people because it’s not widely supported by CAs or soft-
ware. Additionally, the way OCSP is standardized cur-
rently - only a single OCSP response can be stapled. But
most certificates have a chain of three: the root, an inter-
mediate, and the leaf. The root is hardcoded as trusted,
and thus would really need a patch to properly distrust.
But an intermediate cert can be revoked, and thus should
have a revocation check. Practically, intermediate certs
are rarely revoked, which provides some leeway.

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 14/20

https://www.isecpartners.com


5.1.4 Revocation Proposals

During the writing of this paper, Google has an-
nounced⁶³ that Chrome will be moving off OCSP queries
and will instead push CRLs down to the browser using a
system similar to its autoupdate mechanism - although
a browser restart won’t be required. This technique is
very similar to a software patch, which is what has ul-
timately been done in nearly all major certificate com-
promises: Code-Signing Certificates for Microsoft, mis-
issued certificates from Comodo, the hundreds of certifi-
cates issued from Diginotar, and the intermediate cer-
tificate issued from Trustwave. When revocation was
needed most: all browsers had to push a software patch
to their users - Certificate Authority-based revocation
wasn’t enough.

Another proposed solution to revocation is to do away
with it altogether and use short-lived certificates. If a
certificate is only valid for a week, revocation will be
achieved through expiration. Although a certificate can
be resigned if no problems are present, this ultimately
requires close coordination between Certificate Author-
ities and customers, and automatic online signing.

5.2 CĊėęĎċĎĈĆęĎĔē AĚęčĔėĎęĞ AĚęčĔ-
ėĎğĆęĎĔē

Certificate Authority Authorization (CAA) is an IETF
draft⁶⁴ likely to be standardized soon that is designed
to be a mitigating control for Certificate Authorities so
they are not tricked into issuing certificates for domains
to fraudulent applicants. If a server operator wishes to
restrict what Certificate Authorities are able to issue cer-
tificates for their domains, they can enter a CAA DNS
record that states the specific CAs that are able to issue
for that domain. This value is not intended to be con-
sumed by clients (and actually may lead them astray),
but rather by the Certificate Authorities themselves.

A Certificate Authority, when receiving a request to sign
a certificate for example.com, will check the CAA DNS
record for example.com and ensure that if it exists, it
contains their name. If it does not, they will not issue
the certificate. This process is obviously entirely opt-in
on the part of the CA - a malicious or negligent CA could
never perform the check or ignore it. Proposed by a CA

itself, it’s designed to be a mitigating control for Certifi-
cate Authorities who want to voluntarily improve their
security.

CAA also includes a reporting mechanism, so a domain
ownerwhowishes to receive reports from complying CAs
can put in their e-mail or web service address. A CA that
abides by CAA and receives a fraudulent certificate re-
quest can then send the incident report to the domain
owner.

5.3 EĝęĊēĘĎĔēĘ ċĔė SĊėěĊė OĕĊėĆęĔėĘ

A couple of proposals have been made about certificate
extensions intended to benefit site operators. One com-
monly known as Seen Chains⁶⁵ allows browsers to report
to server operators past certificate chains the client has
seen for this host. While some operators would find this
information valuable, most would probably find it over-
whelming and furthermore all the exact same. Although
Seen Chains is unlikely to be adopted or revised further,
the mechanism of reporting anomalies is a good feature,
and was what led to the discovery of the Diginotar attack
(and that was reported manually - automatic reporting is
even better.)

Another certificate extension that will soon be drafted
according to its author is a flag that indicates the cer-
tificate should always have an OCSP staple attached to
it⁶⁶. As the ecosystem stands now, this extension does
not add much to security - if an attacker breaks into a
CA, they’ll opt to not have this flag set. But in the fu-
ture, if a CA chose to only issue certificates that had this
extension set, that CA’s certificates would be more se-
cure. The attacker would target a new CA of course, and
eventually if all CAs moved to this flag, we would have
an all-in approach to fixing revocation and the security
gains of a working system.

5.4 SĊĈĚėĎęĞ PĔđĎĈĞ LĊĆėēĎēČ

Peter Gutmann has given a presentation entitled ”PKI as
Part of an Integrated Risk Management Strategy for Web
Security”⁶⁷, that despite its dry name contains an ex-
traordinary number of interesting concepts. One obser-
vation is that the browsers have produced a User Inter-

⁶³http://www.imperialviolet.org/2012/02/05/crlsets.html
⁶⁴http://tools.ietf.org/html/draft-ietf-pkix-caa
⁶⁵http://tools.ietf.org/id/draft-weimer-tls-previous-certificate
⁶⁶http://www.ietf.org/mail-archive/web/pkix/current/msg30258.html
⁶⁷http://www.cs.auckland.ac.nz/~pgut001/pubs/pki_risk.pdf

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 15/20

http://www.imperialviolet.org/2012/02/05/crlsets.html
http://tools.ietf.org/html/draft-ietf-pkix-caa
http://tools.ietf.org/id/draft-weimer-tls-previous-certificate
http://www.ietf.org/mail-archive/web/pkix/current/msg30258.html
http://www.cs.auckland.ac.nz/~pgut001/pubs/pki_risk.pdf
https://www.isecpartners.com


face that shows almost the same ’trustworthyness rating’
to sites with and without a SSL Certificate, but very scary
looking warnings for sites with a self-signed certificate.
Similarly, there is only two forms of trust: Not Trusted,
and Trusted (the UI indicators for Extended Validated
certificates notwithstanding.) But a more nuanced ap-
proach could indicate ”probably safe” and ”probably un-
safe”.

When the extremes are filled in and a sliding scale of
trustworthiness is present, there are more indicators
available that can contribute to that scale than merely
the presence of a certificate. A browser may review the
continuity of the Certificate, Certificate Authority, Ge-
olocation of host, IP address, and AS. Similarly, there’s
a wealth of time information: registration dates of the
AS, DNS name, certificate, the TTL of the DNS. Geo-
graphic information where China or Eastern European-
based services are less safe, and the browser could see if
the IP Address is a residential connection. Perhaps most
powerfully: howoften do I visit this site? Have I routinely
visited it and provided my credentials, or is this the first
time? With this host of information, a browser can po-
tentially warn people away from spear phishing attempts
that no safebrowsing list has ever seen before.

But browsers aren’t the only ones who can take this ap-
proach - it’s entirely possible for a Certificate Authority
to as well. Is this an American site, hosted in America,
with a request for a certificate coming from Iran? Where
does the request originate? Is a current Extended Vali-
dation certificate being replaced by a Domain Validated
certificate? Are certificates nowhere near expiry being
replaced? Is the certificate authority changing? Is any
of this occurring for an Alexa Top Million website? Top
Hundred? Any of these checks would have stopped the
bogus certificates issued by Comodo in early 2011.

5.5 CA/BėĔĜĘĊė FĔėĚĒ

The Certificate Authority / Browser Forum⁶⁸ is a ”vol-
untary organization of leading certification authorities
(CAs) and vendors of Internet browser software and
other applications”. The most notable part about the
CAB Forum is that being composed of CAs, any require-
ments or restrictions adopted by it must be amenable
to the CAs and thus makes it much more likely to be
adopted. In December 2011 new Baseline Requirements
were adopted to govern the issuance of certificates and

requirements for CAs. These guidelines are not revo-
lutionary, as can be imagined, but do provide several
useful guarantees from CAs. Certificate Issuing policies
must be public, as must security audits, which must be
conducted annually. Some form of revocation, either
CRLs or OCSP, must be provided, and must be able to
be done in under 24 hours in the case of a high-priority
issue. Revocation also must be available to the certifi-
cate owner. Finally, publicly available problem reporting
must be available. These requirements take effect July 1,
2012. Other clauses, such as forbidding issuance of cer-
tificates to private addresses, such as 10.0.0.0/8, take ef-
fect much later.

The CAB Forum is a private group, and the only
source of insight is discussions that occurs on the
mozilla.dev.security.policy forum⁶⁹. A certain degree of
discontent with the CAB Forum has arisen due to it’s
closed nature. As this paper was being authored, an Or-
ganization Reform Working Group has been announced.
For the most up-to-date information, refer to the orga-
nization’s website68.

5.6 NĊęĜĔėĐ PĊėĘĕĊĈęĎěĊĘ BĆĘĊĉ TėĚĘę
DĊĈĎĘĎĔēĘ

A man in the middle attack is isolated to the net-
works downstream of the compromised router. If an
attacked user is able to gain the perspective of an-
other network unaffected, they would be able to see the
anomaly. That is the basic premise behind several Net-
work Perspectives-based revamps of the Certificate Au-
thority system.

5.6.1 Perspectives

Perspectives⁷⁰, a project at Carnegie Mellon, is the old-
est project in this space. The proof of concept was a
Firefox Add-On; when a user initiated a connection to a
secure site, the add-on would contact servers called no-
taries and find what certificate the notaries saw for the
site; and how long they had seen it. In a best-case sce-
nario, they will have all seen the same certificate as the
user, and for a long time, and the certificate would be
considered trusted.

However, if a site rotates SSL certificates, or uses multiple
SSL certificates presented from different load balanced

⁶⁸http://cabforum.org/
⁶⁹https://groups.google.com/group/mozilla.dev.security.policy/
⁷⁰http://perspectives-project.org/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 16/20

http://cabforum.org/
https://groups.google.com/group/mozilla.dev.security.policy/
http://perspectives-project.org/
https://www.isecpartners.com


servers, Perspectives will report an anomaly that may be
indistinguishable from an attack. This is commonly re-
ferred to as the ’Citibank problem’, as they were the high-
est profile site that did this. Each server had its own SSL
certificate, different Perspectives notaries would contact
different servers, and each notary would report different
certificates for the same domain. Additionally, because
notaries poll the website periodically, there is a problem
when the server has updated its certificate, but the no-
tary hasn’t seen it yet - this lag time looks very similar
to an attack from the user’s point of view. Finally, pri-
vacy for the user is not preserved as notaries are informed
whenever a user visits a site.

5.6.2 Convergence

Convergence⁷¹ is a project from Moxie Marlinspike de-
signed to fix the deficiencies in Perspectives and provide
more agility. Convergence is also demonstrated in a Fire-
fox Add-On, and replaces all SSL verification that occurs
within the browser. It fixes the privacy loss by caching
certificates locally if they’ve already been trusted, and by
creating something called notary bouncing. With no-
tary bouncing, one notary will proxy a request to a sec-
ond; the first notary doesn’t know what site is being vis-
ited, and the second notary doesn’t know who is visiting
the site. A notary performs online validation instead of
polling if it doesn’t recognize the certificate seen, so no-
tary lag is eliminated.

The most extensible part of Convergence is that a notary
is able to validate a certificate in any fashion it wishes.
The default operation is to perform the same network
perspectives approach as Perspectives, but it is also pos-
sible to verify certificates from the Google Certificate
Catalog. Although the code is not written, it is also pos-
sible to run notaries that verify certificates through a set
of trusted Certificate Authorities, through DNSSEC, the
EFF SSL Observatory, or any other practice desired. The
ability to change which notaries to trust, and therefore
which validation schemes, is dubbed Trust Agility.

Two issues that plague both Perspectives and Conver-
gence are internal servers and captive portals. If a notary
can’t reach a server - because it is inside an organiza-
tion inaccessible to the internet - it’s unable to validate it.

And captive portals - or the clickthrough agreements in
hotels and airports - prevent any request from escaping
until the user has paid and/or agreed to the terms. Con-
vergence is unable to validate the payment or agreement
gateway because the client cannot contact the notaries.

Another potential problem with both Perspectives and
Convergence is scale. Google Chrome has stated⁷² this
is a very significant reason preventing them from im-
plementing it. Similar to OCSP Hard Fail, the notaries
become points of failure, not just for a single site, but
for the entire browser. Hundreds of millions of users
will hit the default set of notaries and never change off
them - those notaries must perform quickly with 100%
uptime. In the case of commercial browser entities like
Internet Explorer and Chrome, the respective companies
will likely be required to run the notaries to ensure their
browser is not rendered unusable - eliminating the pri-
vacy gains.

5.6.3 CrossBear & MECAI

Crossbear⁷³ is another Firefox Add-On that makes Net-
work Perspectives based trust decisions. The notable dif-
ference; however, is that Crossbear is designed to report
any anomalies and have more users attempt to validate
the finding and determine what network the attack is
isolated to. A similar but less aggressive feature is avail-
able in the latest version of HTTPS Everywhere⁷⁴ a Fire-
fox Add-On that automatically takes you to the SSL ver-
sion of a site if it is available. If enabled, HTTPS Every-
where will report certificates to the SSL Observatory⁷⁵,
which can detect man in the middle attacks.

MECAI, or Mutually-Endorsing Certificate Authority In-
frastructure⁷⁶, is a proposal that borrows concepts from
several others and aims to remove the scale problem
raised with Convergence and Perspectives. Similar to
Convergence, a client has some choice in whom to trust
- when a client contacts a server, they specify which au-
thorities they would like to vouch for the server. The
server will ideally have these vouchers ready, signed by
the different authorities, with a relatively short expiry
time (on the order of a day), similar to OCSP stapling.
The vouching authority is stating that it has seen this cer-
tificate, and that according to an OCSP responder, the

⁷¹http://convergence.io/
⁷²http://www.imperialviolet.org/2011/09/07/convergence.html
⁷³https://twitter.com/#!/crossbearteam
⁷⁴https://www.eff.org/https-everywhere
⁷⁵https://www.eff.org/observatory
⁷⁶https://kuix.de/mecai/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 17/20

http://convergence.io/
http://www.imperialviolet.org/2011/09/07/convergence.html
https://twitter.com/#!/crossbearteam
https://www.eff.org/https-everywhere
https://www.eff.org/observatory
https://kuix.de/mecai/
https://www.isecpartners.com


certificate is not revoked. The final piece of MECAI is
that the vouching authorities are actually other Certifi-
cate Authorities - trying to eliminate the scaling problem
under the assumption that Certificate Authorities should
be able to scale.

5.7 PĚćđĎĈ AĈĈĔĚēęĆćĎđĎęĞ BĆĘĊĉ TėĚĘę
DĊĈĎĘĎĔēĘ

Currently, a Certificate Authority can sign any certificate
they wish, and it will be trusted even though the cert has
never been seen before. The reputation of the Certifi-
cate Authority is relied on. The opposite of this approach
would be to trust a certificate on its own reputation - to
require a certificate be public before it is trusted. An
advantage inherent in this approach is domain owners
can look at all the trusted certificates on the internet and
see if there are certificates issued for the owner’s domain
they are unaware of.

5.7.1 Sovereign Keys

Sovereign Keys⁷⁷ is a proposal by the EFF that boils down
to creating a key, dubbed a Sovereign Key, that will be
the authority for the domain going forward. A Sovereign
Key is posted to an append-only Timeline server, and all
certificates presented by a domain will be signed by that
domain’s Sovereign Key.

Soverign Keys is actually considerably more complicated:
the Timeline servers must be verifiably append-only,
and replicated to mirrors. There are multiple timeline
servers, and they include data from each other by refer-
ence. Timelines have the set of Certificate Authorities
they trust at the current time embedded in them (be-
cause a Sovereign Key is only valid if it is CA-signed, to
bootstrap validation through a trusted third party.) The
mirrors and clients may detect a timeline server has mis-
behaved, and there is a protocol to automatically distrust
that timeline. A Sovereign Key owner is able to spec-
ify entities that are able to revoke and recreate a new
Sovereign Key for the domain. The full spec is available
on the EFF’s git repository⁷⁸.

Besides the considerable complexity, Sovereign Keys
may lack the ability to distrust core Timeline Servers de-
pending on the implementation. Additionally, Sovereign
Keys introduces significant side channels when contact-
ing mirrors to find Sovereign Keys.

5.7.2 CA Transparency and Auditability

Certificate Authority Transparency and Auditability
(CT)⁷⁹,⁸⁰,⁸¹,⁸² is a proposal originating from Google that
relies on individual certificates being registered in public
logs. A certificate is not trusted until it is present in the
log, and a server will present proof of registration along
with the certificate, similar to OCSP stapling. The logs
are verifiably append-only using a cryptographic primi-
tive called a Merkle Tree, and this property is routinely
confirmed. Domain owners watch the logs and ensure
that any certificate that appears for their domain is con-
trolled by them.

It’s possible for this to be implemented so domain own-
ers have to perform no additional work, the Certificate
Authority they register with will take the effort of regis-
tering the certificate in the log for them. Additionally,
there is no side channel and no privacy leakage and it’s
possible to handle private subdomains - where an orga-
nization doesn’t wish to publish internal domains within
an organization. Similar to Sovereign Keys, there is the
concern that a log is unable to be distrusted.

Revocation is not addressed yet, in the initial paper a sys-
tem similar to DNSSEC proof of nonexistence is briefly
described. A server operator would provide, or a client
would query and receive, a list of revoked certificates,
sorted in an order. The client would look in the list for
the certificate they are concerned with, and if certificate
is not present, it would not be considered revoked.

5.8 SĎĒĕđĊ ƭ UēĚĘĚĆđ AĕĕėĔĆĈčĊĘ

5.8.1 Certificate Patrol

Certificate Patrol⁸³ may be the oldest Firefox Add-On in
the group, and is certainly the simplest. It remembers
what certificates have been seen for a domain, and if the

⁷⁷https://www.eff.org/sovereign-keys
⁷⁸https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=master
⁷⁹http://www.links.org/files/CertificateAuthorityTransparencyandAuditability.pdf
⁸⁰http://www.links.org/?p=1212
⁸¹http://www.imperialviolet.org/2011/11/29/certtransparency.html
⁸²http://www.ietf.org/mail-archive/web/pkix/current/msg30146.html
⁸³http://patrol.psyced.org/

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 18/20

https://www.eff.org/sovereign-keys
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=master
http://www.links.org/files/CertificateAuthorityTransparencyandAuditability.pdf
http://www.links.org/?p=1212
http://www.imperialviolet.org/2011/11/29/certtransparency.html
http://www.ietf.org/mail-archive/web/pkix/current/msg30146.html
http://patrol.psyced.org/
https://www.isecpartners.com


certificate changes, presents that change to the user for
review. Of course, a user who is unfamiliar of SSL would
have no idea what to do with this knowledge, but an in-
formed user, like those reading this paper, can review the
change and see if it makes sense to them.

5.8.2 Certificate Authority Penalties

Mozilla has proposed⁸⁴ adding support in the NSS library
to distrust Certificate Authorities based on time. If a Cer-
tificate Authority misbehaves or does not follow proper
procedure, all certificates issued by them after a certain
date can be distrusted, without breaking existing certifi-
cates. Similarly, Sub-CAs or Intermediate Certs could be
limited.

5.8.3 MonkeySphere

MonkeySphere⁸⁵ is almost the oddest proposal covered,
beaten only by the next section. Monkeysphere aims to
bring the PGP Web of Trust to SSL Certificates. When
a new SSL certificate is received, Monkeysphere will at-
tempt to find a web of trust path from the user’s PGP key,
to a PGP key with a UID matching the site, and a key
matching the certificate’s. As currently implemented,
Monkeysphere only performs this trust check for a cer-
tificate that is not trusted under the current hardcoded
Certificate Authorities.

5.8.4 YURLs

Finally, YURLs⁸⁶ invert the trust decision entirely. A con-
cept known as Zooko’s Triangle⁸⁷ (illustrated in Figure 6)
was defined in 2003; summarized it explains that there
are three properties of names of participants in a network
protocol, and it is not possible to satisfy all three proper-
ties. A name is human-meaningful if it is memorable,
such as a domain name. Global or decentralized means
there is no central authority defining the names. Finally,
secure refers not to the transport mechanism, but rather
the assurance that the user is communicating to the end-
point they believe they are communicating with.

Figure 6: Zooko’s Triangle

HTTPS URLs aim for Secure and Memorable. Domain
names are obviously human meaningful, and we achieve
Secure through the use of a central authority (Certificate
Authorities) - ideally the central authorities will not is-
sue a certificate for a domain to anyone but the domain
owner. YURLs, as well as Tor Hidden Services, achieve
secure by embedding the key, or fingerprint of it, in the
URL itself. A user can never be tricked into communicat-
ing with a different server if they already know the key of
the server they want to communicate with. If the server
has the corresponding private key, it’s the correct one, if
not, it can’t be. Embedding a key in the URL immedi-
ately removes human meaningful; YURLs take the form
httpsy://*cl7h3f7jwyj3fvmw7jpnjfvf2xlcmayi
@yurl.net/. Without human meaningful, they aim for
decentralization - the domain name at the end of the
YURL is not a definitive place to look, but rather a hint
for the first place to look. It is possible to be redirected
to a new server; a chain of redirections may occur until
the server with the corresponding private key is found.

5.9 CĔēĈĊĕęĘ Ĕċ CĊėęĎċĎĈĆęĊ AĚęčĔėĎęĞ
EēčĆēĈĊĒĊēęĘ Ćēĉ RĊĕđĆĈĊĒĊēęĘ

When evaluating any proposal to change or enhance Cer-
tificate Authorities or revocation, a number of design de-
cisions and trade-offs should be considered. Bootstrap-

⁸⁴http://groups.google.com/group/mozilla.dev.security.policy/browse_thread/thread/dc63e870965f38fb/
eb7edebc5dc4512d

⁸⁵http://web.monkeysphere.info/
⁸⁶http://www.waterken.com/dev/YURL/
⁸⁷https://en.wikipedia.org/wiki/Zooko's_triangle

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 19/20

http://groups.google.com/group/mozilla.dev.security.policy/browse_thread/thread/dc63e870965f38fb/eb7edebc5dc4512d
http://groups.google.com/group/mozilla.dev.security.policy/browse_thread/thread/dc63e870965f38fb/eb7edebc5dc4512d
http://web.monkeysphere.info/
http://www.waterken.com/dev/YURL/
https://en.wikipedia.org/wiki/Zooko's_triangle
https://www.isecpartners.com


ping trust is difficult, often impossible, as illustratedwith
Public Key Pinning and Strict Transport Security. Secu-
rity Policy is ultimately dictated by the site, and mecha-
nisms that allow a site to define what is anomalous pro-
vide a great deal of power - seen again in Public Key Pin-
ning, Strict Transport Security, and also DNSSEC-based
assertions like DANE and CAA. When a user detects an
anomaly, that can be reported to the site to great bene-
fit, like in Content Security Policy and CAA. And also, if
security policy is not explicitly dictated, it can often be
inferred through rational decisions about what may be
strange or what is reassuring.

From an engineering standpoint - anything that requires
extra round trips is bad. To a lesser extent, anything that
increases packet size such that window sizes are over-
flowed (and thus require a roundtrip at the TCP layer)

is also bad - although this is very low level and often ig-
nored by all but the largest sites. It’s important to re-
member that any signed date requires the client to have
a correct clock. And that users will never change the de-
faults, so those defaults may become points of failure.
From an implementation standpoint, who has to change:
the browsers, servers, or CAs; and how difficult is that
change?

The ability to change who is trusted is desirable, both
for power users, but also so browsers can revoke trust
without disabling large swaths of the internet for their
users. And privacy matters - who receives browsing his-
tory in form of validity checks? Finally, a Network Per-
spectives approach doesn’t say what’s valid, only what is;
and a public accountability approach doesn’t state what’s
correct, only what’s public.

6 AćĔĚę ĎSEC PĆėęēĊėĘ

iSEC Partners, an NCC Group company, is a full-service security consulting firm that provides penetration testing,
secure systems development, security education and software design verification. iSEC Partners’ security assess-
ments leverage our extensive knowledge of current security vulnerabilities, penetration techniques and software
development best practices to enable customers to secure their applications against ever-present threats on the
Internet.

čęęĕĘ://ĜĜĜ.ĎĘĊĈĕĆėęēĊėĘ.ĈĔĒ 20/20

https://www.isecpartners.com

	Introduction
	Browser Security
	Content Security Policy
	Caja
	Javascript Cryptography
	Strict Transport Security
	Public Key Pinning
	Bootstrapping Trust

	DNSSEC
	DNSSEC-Verified Fingerprints
	DNSSEC Trust Chain

	TLS
	TLS Protocol Improvements
	TLS 1.1
	TLS 1.2
	TLS Deployment
	TLS Ciphersuites
	False Start
	Next Protocol Negotiation

	Identity Management in TLS
	Channel Binding
	Origin Bound Certificates
	Using Binding Today
	Secure Remote Password
	Other Identity Management Proposals

	More TLS Improvements
	Encrypted Client Certificates
	Datagram TLS
	Minor TLS Additions


	Public Key Infrastructure
	Revocation
	Certificate Revocation Lists
	Online Certificate Status Protocol
	OCSP Stapling
	Revocation Proposals

	Certification Authority Authorization
	Extensions for Server Operators
	Security Policy Learning
	CA/Browser Forum
	Network Perspectives Based Trust Decisions
	Perspectives
	Convergence
	CrossBear & MECAI

	Public Accountability Based Trust Decisions
	Sovereign Keys
	CA Transparency and Auditability

	Simple & Unusual Approaches
	Certificate Patrol
	Certificate Authority Penalties
	MonkeySphere
	YURLs

	Concepts of Certificate Authority Enhancements and Replacements

	About iSEC Partners

