
Hello, and Welcome. My name is Tom Ritter, and I work for iSEC Partners. If you don’t
know who Zax is, you will by the end of this talk.

This talk is about an anonymity network that was started in the fledgling days of the
Cypherpunk era – the early 1990s.

This book hadn’t even come out yet – this is the second edition. But this is the first
edition, and it had come out, and the US had ruled you while you could export the
book itself, you couldn’t export the floppy disk with the source code.
The United States government was actively investigating Phil Zimmerman for violating
the Arms Control Export Act, for making the first few versions of PGP available.
Dan Bernstein and the toddler-aged EFF went on the offensive taking the US
government to court and suing over the export controls on cryptography.
Another group of people ultimately printed the source code for PGP, exported the
book to Europe, scanned it in, and OCR-ed it in 1997 releasing a version of PGP that
bypassed export controls

Alt.Anonymous.Messages was forged in the heyday of the cypherpunks, and really,
overall, has changed very little in the intervening decade since it was last shaped in
any major way.

And in that decade, what we have seen is a monumental focus of the nations spy

1

agencies on not what was thought to be the most critical piece of information to
encrypt – the content itself. But instead….

1

The people who know won’t talk, and the people who talk don’t know. But the
leaked court orders require Verizon to turn over call records local and abroad. Now,
I’m talking here, so I don’t know anything and am just speculating – but the most
straightforward thing to do with this data is to build communication graphs. Analyze
the metadata, looking for patterns. Identify people of interest, and figure out who
they talk to.

The metadata around an encrypted channel tells volumes.

2

SSL, is the most widely used encrypted channel on the internet today. And even
ignoring the numerous attacks we’ve seen on it in the past few years, and even
ignoring how it breaks just about every cryptographic best practice there is – there is
a wealth of information you can learn from observing an SSL session. There are
protocol level leaks – SSL says a lot about what type of client you’re using, and it’s
version. It also includes what you think the local time is.

3

But from an information theoretic perspective, an adversary can see that you’re
sending packets, and communicating. That seems obvious, of course they can – but
it’s important to bear in mind for the future. Ideally, our adversary wouldn’t even
know if we’re communicating.

Secondly, SSL makes no attempt at hiding who you’re talking to. So the fact that
you’re on Facebook is straightforward.

And similarly, the adversary knows when you’re on Facebook. And when you are
sending data and when you are receiving data. The resolution on this goes down
literally to the microsecond.

So they know exactly when, and they also know exactly how much data you receive.
SSL doesn’t have any real padding, and I don’t know of any website that adds variable
padding to frustrate length analysis.

4

So let’s talk about Tor. Tor is an implementation of Onion Routing, where you pass
messages along a chain, each node peeling off a layer of encryption, until an exit
node talks to the intended destination. The destination responds, and it’s routed
back.

5

Onion Routing specifically aims to disguise Who is talking. An adversary observing
you can’t see that you’re talking to a website (or a service), and an adversary
observing that website or service can’t see who is talking to that website.

But it doesn’t stop an adversary from knowing you’re talking to someone, knowing
when you’re talking, and how much you’re saying.

Tor doesn’t really do padding what little it does is not intended to be a security
feature. Tor explicitly leaves _out_ link padding.

6

And if you stayed through Runa’s talk, you know that Tor cannot protect you if the
adversary can see the entire path of the circuit.

Let’s say hypothetically, New Zealand, Australia, the US, Canada, and the UK were to,
say, conspire secretly on some sort of spy program.

Well if your circuit went through those countries – Tor can’t help you. The adversary
can track your traffic, and find out who you’re talking to. I’m not saying this is actively
happening, I’m saying we’ve proved in papers that it’s possible, and it’s outside Tor’s
threat model.

7

And a slightly more difficult version of that attack is if the adversary can see you, and
then see the last leg of the path later on, like say, you’re in China visiting a Chinese
website. Well, they can do a similar attack, and track you down. It requires a little bit
more math, but again, we’ve proved it’s possible, and it’s outside Tor’s threat model.

And this is particularly concerning seeing as I, like most of you probably, are in the
US…. And so much of what we do online is hosted in the Virginia datacenter of EC2.

8

So if either of those two cases apply, we’re basically back at SSL, because the
adversary can tell who you’re talking to.

9

And at this point, I think it’s worthwhile to show a couple of attacks on metadata.
IOActive built a proof of concept traffic analysis tool, that looks at your SSL session
with Google, and figures out what part of google maps you’re looking at – all based
off the sizes of the tiles you’re downloading over SSL.

It’s worthwhile to note this is an attack on a client, on someone browsing google
maps at that moment. I want to show an alternate example.

10

You’re sitting on facebook, with facebook chat enabled – all over SSL. Heck, all over
Tor.

Well Facebook chat acts as a _server_ - you are able to receive messages from
people, and they will be pushed down to you. The *attacker*, not you, determines
when you will receive a message. That’s a pretty powerful capability, and it can lead
to time-based correlation attacks. An adversary sends you a message, and then looks
at all the people connected to Facebook, or Tor, and sees who recieves a message
right after that.

11

And even easier, because Facebook chats tend to be small – it can lead to size-based
correlation attacks. Now not only do I send you a Facebook chat, but I send you a
HUGE Facebook chat. With only a couple of trials you can be pretty confident that
the user whose internet connection you’re monitoring is the same anonymous Syrian
dissident you’re messaging on Facebook.

And it’s interesting to note that a very similar attack was used to de-anonymize
Jeremy Hammond, who is currently awaiting trial for allegedly dumping Stratfor’s
mailspools. The police staked out his home, watched him enter, saw some Tor traffic,
and whoop – the username they thought was him, popped onto IRC. Classic traffic
confirmation attack. And I’ve gotten some comments they also cut his Internet
connection, and watched him drop off IRC, but I haven’t seen the police logs from
that side of things – if that is true, that’s another type of traffic confirmation attack
on a low latency connection.

http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-
busted-a-chicago-anon/

12

http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/
http://arstechnica.com/tech-policy/2012/03/stakeout-how-the-fbi-tracked-and-busted-a-chicago-anon/

Now the good news is that even if the adversary can see the start and end nodes, or
even the entire path, there is a way to disguise who you’re talking to. And that’s Mix
Networks. Mix Networks introduce a delay, while they collect messages into a pool,
and then fire them all out. Collecting the messages prevents an adversary who’s
observing the mix from knowing what message went where. It introduces
uncertainty.

Mix Networks are a super important part of anonymous communication, that I want
to encourage the growth of, so I want to take a quick minute to demonstrate it to
you, live on stage.

13

Alright, so Mix Networks demonstrated, we’ve gained back a certain amount of
protection against figuring out who it is I’m communicating with. Given enough time,
or a low enough traffic volume, an adversary can perform the same types of attacks I
described against Tor – but it takes a lot more observation. And the easiest thing to
learn, that takes no time or analysis, is the fact that I’m communicating, when I send
a message, and how large it is – that is still apparent to someone observing my
network connection.

14

Enter Shared Mailboxes, and Alt.Anonymous.Messages. A shared Mailbox is what is
sounds like. Imagine an email account where everyone in the room has the
username and password – but it’s read only access – you can’t delete messages, or
even send them from this mailbox.

All of the messages are encrypted, so what you do, as one of the people with access
to this inbox, is download all the messages, and try and decrypt each message with
your private key.

15

And a couple of those messages happen to be for you. The rest, you can’t decrypt, so
they must not be.

16

Well, someone watching this encrypted connection can tell that you’re accessing the
shared mailbox, and downloading all of the messages – that’s certain. But they don’t
actually know if you’ve received messages – they only know that you downloaded all
of the messages, not if you could decrypt any of them.

And because of that, they don’t know when you’ve received a message, who it was
from, or how large it was. All they know if that you’re checking the mailbox.

At the cost of a lot of bandwidth, receiving messages via a Shared Mailbox provides
an awful lot of security comparatively!

17

Now, shared mailboxes are an awesome anonymity tool, but the difference between
an awesome anonymity tool and an anonymity tool that’s actually used is the answer
to the question: “Can I interact with the rest of the world?” Tor, wildly successful
compared to other systems, because you can browse the actual internet with it. It’s
not a closed system where you only interact with hidden services.

So for a shared mailbox to actually be used, it needs to interact with normal email.
That’s where nymservs come in. The simplest nymserv, the newest and easiest to
use, receives a message at a domain name, and post it immediately to
alt.anonymous.messages. This is a nymserv written by Zax, and it’s on github.

18

The much more complicated Type I or ghio nymservs can forward the mail to another
email address, directly to alt.anonymous.messages, or route it through a remailer
network to eventually wind up one of those two places. I’ll talk more about this
nymserv later on.

19

So if we add in nymservs, Shared Mailboxes have awesome anonymity for the
recipient. When you send a message to a nym that uses a shared mailbox, you’re
ideally using an Onion Router or a Mix Network (although you don’t have to), and
thus have those security properties – an adversary can see that you’re sending a
message, when you sent it, and how large it was

20

So, now that I’ve walked through the security properties of the different types of
anonymity networks, let’s actually dive into AAM. It should have really strong
security, afterall it’s the most theoretically secure.

If you’ve never looked at it before, this is what it looks like in Google Groups. A
bunch of hexadecimal subjects, posted by Anonymous or Nobody

21

And any individual message usually looks like a PGP Message that may or may not
have a version string.

22

There’s about 190 messages posted per day these days, but what’s interesting is
while the average certainly has decreased over the last decade, it’s held somewhat
steady in the last 5 years.

23

The dataset I worked off of was about 1.1 million messages from the last ten years.

Now we can already see some shortcomings here. Over half of the messages in my
dataset go through nodes operated by two people. The network diversity is horrible,
and the network itself would be thrown into disarray if either one of these folks got
subpoena-ed, shut down, or retired. But, it’s actually much worse than this slide.

603,844 / 1,128,312 = 53.5%
Dizum: 416579
Zax: 192317

24

You see that 53.5% statistic was over the entire dataset. Today, these two folks make
up virtually all of AAM.

That dip: 7,800 messages through Frell, which operates a remailer and a
newsgateway

Subject: España busca que el consejo resuelva problema de activos tóxicos
No unique headers, identical PGP signaturas of Tag types 10,3,9

I couldn’t get much out of those messages, other than that someone sent out 7800
messages in a group, over a short timespan, and then stopped..

25

So, with network diversity pretty clearly abolished, let’s take a look at the data, and
see what types of analysis we can do.

26

I don’t think I can say anything as ironic as this quote, which I pulled from literally,
1994.

Read it

And here we are, just shy of 20 years later.

27

So the first thing to do is to break it up by PGP or Not-PGP. And you can see it’s
overwhelmingly PGP messages.

So, really quickly, what are the non-PGP messages?

28

Well, I was trying to come up with a nice way to say crackpots – I’m not sure if I
succeeded.

But there are several people who have and continue to post just… random… rants.
About… I’m not really sure. And there are actually Frequently Asked Questions that
have sprung up in response to the crackpots, because people were just getting flat
out confused.

29

So, besides those there are some other non-PGP messages. I think most interesting is
a set of about 10K messages with the subject ‘SATANIC OPERATION’ , or OPERATION
SATANIC. What’s interesting about these messages is they’re clearly ciphertext, but
alphabetic. If you look at a single message, you almost think it’s a Ceaser Cipher, or a
Vigenere, or a polyalphabetic. But if you analyze the messages in whole, you discover
a 16 letter alphabet with a perfectly even distribution.

In other words, I think it’s a substitution cipher into Hexadecimal. And the even
distribution implies it’s ciphertext of some sort.

And there are other message clumps similar to this, so if you’re into this sort of
analysis, have at it!

30

So the next thing to look at is what percentage of messages were delivered to AAM
via a nymserv or a remailer.

These numbers are going to be a bit off, since some of the PGP or Remailed messages
are actually to nyms, and some of the PGP messages may be through remailers I
don’t know about. But it’s something. We can see that a large portion are messages
to nyms, which will be important when I eventually tell you how many nymservs are
actually running.

31

All right, so those somewhat interesting statistics aside – let’s start diving into all of
those hundreds of thousands of encrypted messages. So if you didn’t know,
OpenPGP consists of packets, and each packet type does something slightly different.
There’s a packet type for a message encrypted to a public key, and a different packet
type for a message encrypted to a passphrase.

32

So what are these packet types. These graphs show the popularity of each of the
different packet signatures, i.e. packet 1, followed by packet 9

The top 5, the ones on the bottom, are the ones you’d expect to see.

33

1 is messages encrypted to a public key.

34

3 is Messages encrypted to a passphrase.

35

The actual ciphertext of a message is 9 or 18 for old-style or new-style. And I
separated out the messages sent to a single public key vs. ones sent to multiple.

36

There are two that are weird. These are packet types you’d expect to see after you
decrypted a message. These are plaintext packets. There are actually a small
number of messages that look like OpenPGP data – they’ve got the BEGIN PGP
MESSAGE ticker and they’re base64ed – but they’re actually plaintext. Just hiding in
plain sight.

37

And if we look at packet type 8 – this is what we get. It really just is compressed
plaintext data. Unfortunately, it’s also nonsense. I don’t know if there’s a code there
or not, but I didn’t spend any time on it, I figured “Iran ongoing bizarre sabbatical”
probably came out of some makov generator somewhere. So I moved on to…

39

The messages that were sent to public keys. It’s super obvious to do analysis based
on the public keys in the message. I promise you the analysis gets more complex
later. But lets look at KeyIDs.

40

So obviously the KeyIDs are a pretty powerful segmenting tool. So I wanted to
illustrate a couple of examples where the KeyIDs tell us more.

There was one KeyID that was messaged very reliably through a nymserv. Except for
2 messages sent through EasyNews. If you track down the very unique easynews
gateway + User Agent, we find that that person also messages another KeyID. We
can start making inferences across multiple types of metadata.

41

Now I mentioned that I separated the messages that were sent to a single public key
from the ones sent to multiple. If a message was sent to a single key, we don’t know
too much about it, especially because usually they throw the key ID, so you can’t tell
what public key it was encrypted to. But if a message is sent to more than one public
key ID, then…

42

You can draw communication graphs. Now it’s not a strict communication graph in
the sense that a message was sent from Alice to Bob, technically it’s that Alice and
Bob both received the same message. But in some, if not most, situations, people
include themselves on messages they send… so they can read their own sent mail.

43

So a quick legend to these graphs, if a node is green, that means I was able to find the
public key on the a keyserver.
If the node is a circle, that means that key received messages individually. And the
size of the circle, and the width of the line, means how many messages they received.

So we have this very nice symmetrical 5-person graph here.

44

And then we’ve got these much larger communication networks here.

45

And then we’ve got this huge spiderweb of messages.

46

And we’ve got a couple of interesting graphs with central communication points.

47

And then we’ve got a couple of more interesting networks. And I think these are
interesting because they imply that not everybody knows everybody else. This graph
and the next one really may be a model of the actual Internet where people will
email other people and in a complex, interconnected, but not fully connected way.
This is a fairly low-volume network

48

While this one has quite a few higher-volume folks participating.

49

And then here’s the rest of them the simpler, 2-person communications.

50

So I was working on the communication graphs after all the PRISM stuff came out,
and I was feeling distinctly uncomfortable imagining that this is what the NSA is
probably doing to me and my friends.

But the show must go on, so let’s talk about brute forcing ciphertext. Now if you’ll
recall this graph, you saw that packet type ‘9’ was by far the most common packet
type found – over 700,000 of them. Now this packet type is interesting so let’s dive
into a little bit.

51

This packet is the actual ciphertext of the message. It is only, the encrypted data. It
doesn’t say what algorithm it is, and it doesn’t explain how to get the key.

52

The key, is in another packet. It’s in packet type 1 (for public keys) or 3 (for
passphrases).

53

But if you’ll recall from that graph, there aren’t any packets that precede packet type
9. We’ve got a disconnect from what the spec says, and the data we see.

54

Well if we keep reading, we’ll find this gem.

“the IDEA algorithm is used with the session key calculated as the MD5 hash of the
passphrase”

55

Yea. The MD5 of the password.

This is absolutely legacy, and we’ve had better ways of doing this in OpenPGP since
the late 90s. So while in the very beginning of AAM, this might have been excusable,
the fact that my dataset was from 2003 onwards makes this a pretty horrible
situation.

So we know how to MD5s really, really fast. But that’s only half of this. We have to
take the output and use it in an IDEA decryption. And then we have to detect if what
we decrypted to was an actual plaintext, or just random. And while you can run
randomness tests – they’re slow, and we’re brute forcing here – we want to go as fast
as possible. So while I spent a lot of time at this point, wrote a lot of code and did a
lot of optimizations, it doesn’t play very well into the slides, so I’ll just say that I wrote
a lot of CUDA-powered code and brute forced these on GPUs for many months.

And one of the first results I got, actually a few dozen of these messages, was

56

This did not make me feel terribly good about myself. But I persevered.

57

58

More encrypted messages. Recursively encrypted PGP messages.

59

In fact, here’s a breakdown of how many recursions I hit. I got about 10,000
decryptions into a public key message, and another 2200 into another password-
protected PGP message. I was able to take 49 messages two layers deeper, and 5
messages 4 layers deep.

Now, for the number of messages I was trying to brute force, these numbers may not
seem very impressive. While I certainly am not the best password cracker here at
Defcon, I think it’s worth bearing in mind that I am not trying to crack passwords, I’m
trying to crack encryption keys used by some of the most paranoid people on the
Internet. So I’m sure people can do better, but I don’t feel too bad about these
results.

But I haven’t explained why there are so many recursively encrypted messages.

60

And to explain that I have to talk about Remailers. So how many have heard of
Mixmaster and Mixminion.

Okay a good number of you. Well these tools have been dubbed Type II and Type III
remailers. Which means there must be a Type I remailer somewhere. Well, Type I
remailers are basically dead, but their protocol lives on in Mixmaster.

61

And boy, what a protocol.

This is the manual of how to use most, but not even all, of the options supported by
Type I remailers.

62

Some of the Type I directives are on the left. Now, what’s the difference between
Remail-To, Remix-To, Anon-To, and Encrypt-To? I sure as heck don’t remember, and
I’ve been studying this for a while. And to use a Type-I, you have to type each of
these options out, yourself. There’s usually no GUI here.

I had talked in the beginning about Type I nymservs? Well, Type I nymservs are the
main recipient of these directives. You would string together a mix network chain of
directives, encrypted to different nodes, and that would be your reply block. When
someone emails your nym, the nymserv would basically execute your reply block,
sending the message off through each of the steps, ultimately coming out to either
your real email address, or a Usenet group like AAM.

We’re still seeing these messages posted. But there are only 2 Type I Nymservs
operating. One is Zax, of course, the other is paranoici. Paranoici is run by a group of
Italian Hackers in Milan, they also run Autistici, Inventati – which you can think of as
an Italian version of RiseUp.

63

So, in conclusion what are those nested PGP messages? They’re Type I nymserver
messages, where the keyID is the ultimate nym owner. If I don’t have a keyid, there’s
another layer of symmetric encryption I didn’t crack. When you download Type I
nymserver messages, you know all the passwords, peel them off one by one, and
then finally use your private key.

This is all the recipients with >5 messages. Pretty top heavy towards just a few nyms.

64

So Communication Graphs and brute forcing is really just the first, quarter, I would
say, of the analysis I did on AAM. A majority of my time was spent doing Correlation.
Even if I don’t know who a message is to, or what it says, it’s valuable to know that
it’s to the same person as another message, or was sent by the same sender.

65

And why is that valuable? Well, let’s go back to this slide. You can’t tell if someone
has even received a message in a shared mailbox. But if I can correlate one message
with another,

66

Then I can start determining that some unknown person _has_ received a message.
And once I know these two message are related, well I can pay attention to the
timestamp and the length. This goes even further,

67

because people tend to respond to messages they receive. And since I know If
someone has _sent_ a message, it might be that they are replying to a message they
just received.

So let’s talk a lot about correlation, and more analysis on what’s in AAM.

68

So first off, it’s obvious that you can correlate messages that use a single, constant
subject. But there are a lot of messages like these! Nearly half of all the messages
posted to AAM!

They tend to be older, and have tapered off more recently. Which makes sense.

69

And if you’ve looked at AAM, what you’ve probably seen is the random Hexadecimal
subjects. Those look random. Let’s correlate them.

So there are two algorithms to generate these subjects. Esubs, or Encrypted
Subjects, and Hsubs, or Hashed Subjects. And the point of these is to quickly identify
which messages are for you, and which you should ignore. This saves you an
expensive public key operation. Now personally, I think we’re at the point we could
probably cut this step out, but nonetheless, it’s there.

So esubs have two secrets – a subject, and a password. Hsubs have a single secret, a
password. If you want to brute force these, it’s considerably more difficult to brute
force the esubs – and I ran out of time. Now you’d think that esubs must be newer,
but actually it’s the hsubs.

70

Hsubs were created by Zax actually, and as his services are used more and more, they
make up an increasing percentage of the subjects.

Now, hsubs have a random piece in them that you can think of as an Initialization
Vector, or as a salt. While I could try to shoe-horn these into the existing SHA256
password crackers out there, it’d be really painful, because hsubs will truncate the
output to match the length of esubs. So I had to write my own GPU cracker, again.

71

And I cracked about 3,500 hsubs. Better than the percentage of messages I brute
forced, but again, not a great percentage. But keep in mind these are passwords of
the most paranoid people on the Internet.

I found an interesting set of messages with the hsub DANGER WILL ROBINSON, which
was used by some, but of all, of the messages to a couple of particular KeyIDs.

I cracked all the hsubs of another Key ID, with the two passwords testicular and
panties.

If you don’t know what schmegma is, don’t urban dictionary it.

72

So if HSUBs and ESUBs are used to let a nym own identify their messages, can we do
something similar? Let’s say we want to target the nym Bob. Well, what we can do it
send a particularly large message to Bob, full of nonsense. And then we wait for a
large message to pop out into AAM. Zax’s nymserv is instantaneous, so this size-
based correlation is easy. Type I nymservs are not necessarily instantaneous, so
they’re a little more difficult, but it’s not _too_ difficult. We can get a very good idea
by keeping careful track of the size and maybe doing it a couple times.

And this works, easily and efficiently. And what we get is a specific message we know
is to a particular nym, that we can then target for hsub cracking.

73

So I’m not done.

But unlike everything I’ve presented before, what I’m going to talk about now is
probability-based attacks. That is, I come up with a hypothesis, that I can correlate
messages with a probability better than random if I look at property X. Whatever it is.
Well, if I don’t have a control or test messages, I can’t tell if that hypothesis worked,
right? Well, I don’t have controls. So what I’m doing is coming up with a hypothesis,
running it across the dataset, and then looking at the clusters of messages that come
out. And if I can figure out something _else_ that correlates them, I call it a success.

Like say – If a message header has a value of X – I think that’s a unique sender. Only
one person is sending those messages. So I run that analysis, and I get clusters of
messages encrypted to a single public key. Well, if there was no correlation, I
wouldn’t get such nicely segmented public keys, would I? It would be a random
distribution of the all the public keys in the dataset. And even though I could have
found that cluster by just looking at the public key ids – this data implies that I could
use that trick, that hypothesis, to find clusters of data when there _is_ no other
distinguishing characteristic.

So that’s how I try and preserve some semblance of the scientific method, while not
actually having controls.

74

So my first example was message headers, and that’s a big one. Let’s look at these.

75

There are a few headers that are in nearly every message, but a long tail of headers
that in only a few.

76

But those mostly-unique message headers are not necessarily the goldmine you
might think they are.

And that’s because headers can be added by the client, by the exit remailer, by the
mail2news gateway, or by the Usenet peer.

77

So to really go after the distinguishing headers, that is the headers added by the
client – I have to subtract out the headers that were added by all the other parts of
the path.

78

And here are some great examples of headers specified by the client.

79

These strange headers all formed a distinct clump of messages, with the unique
subject “Weed Will Save The Planet”. An easy example of how the idea of unique
message headers can correlate messages.

80

X-No-Archive – this means, don’t save it in Usenet. It’s a client request that most
usenet servers will obey.

It’s also not the word on the screen. This is a misspelling of the header. And there is
one person, at least I’m claiming one person, who has messed this up, and
completely distinguishes their messages. All 17,300 of them.

~17,300 messages with this header
Every one of them w/ subject of ‘forforums’

81

So this is what you want, right?

No. Capitalization matters, and this is not the correct capitalization.

What’s interesting about this one is that it shows up on several long running threads
on AAM, composing nearly 28,000 messages. Now initially, I thought each of these
threads was relatively independent from each other – but after finding this bit of
information – I’m starting to seriously doubt that.

82

This one isn’t right either.

1500 messages posted with this header
Including test messages posted with someone’s real name

83

This is the correct version, and about 135,000 messages had it, or a little more than
10%. Which makes it distinguishing in and of itself.

84

So how about Encrypt-Subject?

So Encrypt-Subject is an directive for Type I remailers that should be processed by the
remailer – it should never make it’s way into Usenet. This is a bug, this is a client
messing things up. And I can’t blame them, because Type I is so horribly difficult.

Over 10000 messages like this. And when you reuse the subject, like these, you make
messages without Encrypt-Subject stand out

85

Or even worse, mess up once, and then figure it out and reuse it…

I can identify 52 esub messages that were otherwise secure because of
subject/password reuse

86

And then there’s Encrypt-Key. Another header that should never make it’s way into
Usenet, but does because Type I remailers are so hard to use.

There are over 10,000 of them.

87

Let’s look at another header. Newsgroups. Just list mailing lists, you can post a
message to more than one newsgroup. But if you do, you’re wildly in the minority,
and that segments you.

88

Like this newsgroup. There are 34 messages posted with this newsgroup, and than
you so much comcast for making your users extremely distinguishable.

34 messages
every one of them:
 subject: mlw0lj2b9HBP7EURCn0PdCvyyatVk8i Adam S. Toline
 uniquehsig: 8, 40
 40 User-Agent: Xnews/03.04.11

89

Well what about this value. AAM with 4 commas at the end.

I thought this was a correlation attack – but after tracking it down, it was actually
caused by a bug in ‘remailer.org.uk’ for a week in January ’06.
Random trivia I pulled out of this dataset.

1/21 - 1/29 2006

90

How about this one, with duplicated newsgroups. These were sent through a large
variety of remailers and have no obvious correlation besides this value, and that they
have english subjects.

So the English subjects was the control I used to confirm that using a unique
newsgroup is a bad idea.

Lot of
 - ATTN T-Boy
 - Pariser Wasser
 - Fresh fish from China

All of these have these two newsgroups, sent through many different remailers:
 - melontraffickers, frell, cypherpunks.to, dizum, rebleep, tatooine, paranoici, firenze

91

Humans are creatures of habit, and as flaky as remailers have been, a lot of people
find a configuration that works for them, and then they stick with it. Well, if I
partition people by the remailer and the newsgateway they use – that’s what the
colored squares are – what was previously an “anonymous” discussion thread
suddenly makes it very easy to pick out who is saying what, and if they’re arguing
with or supporting themselves.

92

And if I add in the header signature at the far right, it’s even easier!

93

And then here’s a really interesting pattern I observed. There are a host of messages
who have subjects with a 1 or 2 in them. Like soggy / soggy2.

Well I looked at those, and found they were being posted together, really close
together. And then I realized – one of the options in Type I remailers is to duplicate a
message for redundancy. Send the same message down two different remailer
chains, just in case one becomes unavailable. And while this gains you some measure
of availability – it’s also distinguishing.

You could target a nym, like I described earlier, with a huge message – and if you see
two huge messages appear, you know that that nym’s reply block duplicates
messages. Look for all possible duplicate messages, and you’ve got a candidate list of
messages to that nym – even if you’re unsuccessful doing an hsub or esub crack.

94

And a similar pattern I saw was these. Look at each pair of messages with the slightly
different backgrounds. The second message comes out of dizum about 5-6 hours
later from the one that comes from panta-rhei.

I don’t know what this means, but it did stand out and is distinguishing.

Subject: “Weed will save the planet”
Also, messages from frell were mixed in, with no obvious correlation to other
messages

95

So there were a number of other hypotheses I tried that did not turn up interesting
data, and there are more queries that could be run across this dataset. But I need to
start wrapping up. It all comes down to Metadata.

96

What we saw is that AAM had the obvious mistakes we’d expect.

And it also suffers a bit because it hasn’t taken into account the lessons we’ve
learned since it was developed.

But I do think there’s some traffic analysis lessons we haven’t codified as best
practice, that we probably should.

97

So what does the future hold for AAM? Well, the security of a well-posted message is
good.

98

With a lot of caveats. If you use uncrackable passphrases, only use servers that
output key stretched packets, post through remailers, with no distinguishing
characteristics, and you’re willing to be a very small anonymity set.

I don’t know how many people are using AAM, but it’s not a lot. What that means is
if the government asked for a list of everyone who uses AAM – they would get a very
short list of names. Probably small enough to dig pretty deeply into each of their
lives.

99

And AAM crucially relies on Remailers and Newsgateways. And these services are
dying. Remember that 2 people, Zax and Dizum, post more than 98% of the traffic to
AAM.

AAM is also text-based – very limited bandwidth.

100

And the nymservs themselves are pretty crappy, architecturally speaking. We give
single-hop proxies like VPNs and UltraSurf a lot of shit because their Architecture is
not as strong as Tor’s.

But nymservs are in that exact same category of “Trust this guy not to roll over on
you”

I feel compelled to mention that the alternative is to use Tor, which you trust, to send
email via throwaway accounts on a service you do not trust. While this is a practice
everyone in this room has used or at least thought of – it’s still a really shitty
architecture.

101

Now the good news is we have something better. We have a very strongly
architected Nymserv.

Pynchon Gate was designed by Len Sassaman, Bram Cohen, and Nick Mathewson,
and it uses Private Information Retrieval instead of a Shared Mailbox. It exposes less
metadata, and resists flooding or size-based correlation attacks.

However, it’s not built. It’s been started, but it’s got a very long way to go. It also
requires a remailer network to operate.

102

And we don’t really have a remailer network. What we’ve got is Mixmaster and
Mixminion. Now Mixminion is a bit better than Mixmaster, which doesn’t have any
Link Encryption, has known attacks, uses old crypto with no chance of upgrading.

103

But both of these services suffer from the fact that we don’t have a good solution to
remailer spam or abuse, we don’t have good documentation about them, and they
both have horrible network diversity.

104

So if we like Pynchon Gate, the path forward also involves fixing Mixminion. And
mixminion needs love.

Mixminion is currently unmaintained, but we have a TODO list that includes the items
I’ve got here. Some of them are extremely complicated, like moving to a new packet
format. Others are relatively straightforward, like improving the TLS settings, and
others give you the opportunity to practice writing crypto, designing a distributed
trust directory, or writing a complete standalone pinger in any language or style you
want.

So if you’re interested, there’s a lot of pretty cool opportunities here.

105

But what I keep coming back to is the fact that we have no anonymity network that is
high bandwidth, high latency. We have no anonymity network that would have let
someone securely share the Collateral Murder video, without Wikileaks being their
proxy. You can’t take a video of corruption or police brutality, and post it
anonymously.

Now I hear you arguing with me in your heads: Use Tor and upload it to Youtube. No,
youtube will take it down. Use Tor and upload it to MEGA, or some site that will fight
fradulent takedown notices. Okay, but now you’re relying on the good graces of
some third party. A third party that is known to host the video, and can be sued.
Wikileaks was the last organization that was willing to take on that legal fight, and
now they are no longer in the business of hosting content for normal people.

And you can say Hidden Service and I’ll point to size-based traffic analysis and
confirmation attacks that come with a low-latency network, never mind Ralf-Phillip
Weinmen’s amazing work the other month that really killed Hidden Services. We can
go on and on like this, but I hope you’ll at least concede the point that what you are
coming up with are work-arounds for a problem that we lack a good solution to.

106

So if I’ve been able to entertain you, I am glad, if I’ve been able to inspire you to work
on anonymity tools, I am overjoyed. And if you want a place to start, I will point you
here.

Thank You.

107

108

109

110

111

112

113

114

115

116

